Spaces:
Sleeping
Sleeping
File size: 6,577 Bytes
0f8ddfb 126fff1 e59d9f1 0f8ddfb 56ff5cb 0f8ddfb 56ff5cb 2d22901 181eb38 126fff1 56ff5cb 126fff1 2bd2d6d 56ff5cb 2bd2d6d 2d22901 56ff5cb 2d22901 56ff5cb 2d22901 56ff5cb 2d22901 56ff5cb 2d22901 181eb38 56ff5cb 126fff1 0f8ddfb 126fff1 56ff5cb 126fff1 56ff5cb 126fff1 56ff5cb 126fff1 0f8ddfb 2bd2d6d 2d22901 181eb38 2d22901 2bd2d6d 2d22901 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import streamlit as st
from PIL import Image
import numpy as np
import pandas as pd
# Simple app: convert user input into ASCII codes and binary labels
def string_to_binary_labels(s: str) -> list[int]:
"""
Convert a string into a flat list of binary labels (0 or 1) representing
each character's 8-bit ASCII code.
"""
bits: list[int] = []
for char in s:
ascii_code = ord(char)
char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)]
bits.extend(char_bits)
return bits
def image_to_binary_labels_rgb(img: Image.Image, max_pixels: int = 256) -> list[int]:
"""
Convert an RGB image to binary labels (0/1).
Store full RGB values (24 bits per pixel).
"""
img = img.convert("RGB")
img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels))))
img_array = np.array(img)
flat_pixels = img_array.reshape(-1, 3)
bits = []
for pixel in flat_pixels:
for channel in pixel: # R, G, B
channel_bits = [(channel >> bit) & 1 for bit in range(7, -1, -1)]
bits.extend(channel_bits)
return bits
def binary_labels_to_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image:
"""
Convert binary labels (0/1) into a grayscale image.
"""
total_pixels = len(binary_labels)
if width is None or height is None:
side = int(np.ceil(np.sqrt(total_pixels)))
width = height = side
needed_pixels = width * height
if total_pixels < needed_pixels:
binary_labels += [0] * (needed_pixels - total_pixels)
array = np.array(binary_labels, dtype=np.uint8) * 255
image_array = array.reshape((height, width))
img = Image.fromarray(image_array, mode='L')
return img
def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image:
"""
Convert binary labels (0/1) into an RGB image.
"""
total_pixels = len(binary_labels) // 24
if width is None or height is None:
side = int(np.ceil(np.sqrt(total_pixels)))
width = height = side
needed_pixels = width * height
needed_bits = needed_pixels * 24
if len(binary_labels) < needed_bits:
binary_labels += [0] * (needed_bits - len(binary_labels))
pixels = []
for i in range(0, needed_bits, 24):
r_bits = binary_labels[i:i+8]
g_bits = binary_labels[i+8:i+16]
b_bits = binary_labels[i+16:i+24]
r = sum(b << (7-j) for j, b in enumerate(r_bits))
g = sum(b << (7-j) for j, b in enumerate(g_bits))
b = sum(b << (7-j) for j, b in enumerate(b_bits))
pixels.append((r, g, b))
array = np.array(pixels, dtype=np.uint8).reshape((height, width, 3))
img = Image.fromarray(array, mode='RGB')
return img
# Predefined headers for the 32 mutation sites
mutation_site_headers = [
3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
]
st.title("ASCII & Binary Label Converter")
# Create tabs
tab1, tab2 = st.tabs(["Text to Binary Labels", "Image to Binary Labels"])
with tab1:
st.write("Enter text to see its ASCII codes and corresponding binary labels:")
user_input = st.text_input("Text Input", value="DNA")
if user_input:
ascii_codes = [ord(c) for c in user_input]
binary_labels = string_to_binary_labels(user_input)
st.subheader("ASCII Codes")
st.write(ascii_codes)
st.subheader("Binary Labels per Character")
grouped_chars = [binary_labels[i:i+8] for i in range(0, len(binary_labels), 8)]
for idx, bits in enumerate(grouped_chars):
st.write(f"'{user_input[idx]}' → {bits}")
st.subheader("Binary Labels (32-bit groups)")
num_groups = (len(binary_labels) + 31) // 32
table_data = []
for grp_idx in range(num_groups):
start = grp_idx * 32
end = start + 32
group = binary_labels[start:end]
if len(group) < 32:
group += [0] * (32 - len(group))
edited_sites = sum(group)
row = group + [edited_sites]
table_data.append(row)
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
st.dataframe(df)
st.download_button(
label="Download Binary Labels as CSV",
data=','.join(str(b) for b in binary_labels),
file_name="binary_labels.csv",
mime="text/csv"
)
with tab2:
st.write("Upload an image (JPG or PNG) to convert it into binary labels:")
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
img = Image.open(uploaded_file)
st.image(img, caption="Uploaded Image", use_column_width=True)
max_pixels = st.slider("Max number of pixels to encode", min_value=32, max_value=1024, value=256, step=32)
binary_labels = image_to_binary_labels_rgb(img, max_pixels=max_pixels)
st.subheader("Binary Labels from Image")
num_groups = (len(binary_labels) + 31) // 32
table_data = []
for grp_idx in range(num_groups):
start = grp_idx * 32
end = start + 32
group = binary_labels[start:end]
if len(group) < 32:
group += [0] * (32 - len(group))
edited_sites = sum(group)
row = group + [edited_sites]
table_data.append(row)
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
st.dataframe(df)
st.download_button(
label="Download Image Binary Labels as CSV",
data=','.join(str(b) for b in binary_labels),
file_name="image_binary_labels.csv",
mime="text/csv"
)
st.subheader("Reconstruct Image from Binary Labels")
option = st.radio("Choose Reconstruction Mode", ["Grayscale", "True Color (RGB)"])
if st.button("Reconstruct Image"):
if option == "Grayscale":
reconstructed_img = binary_labels_to_image(binary_labels)
else:
reconstructed_img = binary_labels_to_rgb_image(binary_labels)
st.image(reconstructed_img, caption="Reconstructed Image", use_column_width=True)
# Future: integrate DNA editor mapping for each mutation site here |