File size: 5,998 Bytes
0f8ddfb
126fff1
 
 
e59d9f1
0f8ddfb
 
 
 
 
 
 
 
 
 
 
126fff1
2d22901
181eb38
126fff1
 
2d22901
 
126fff1
2bd2d6d
 
 
 
 
 
 
 
 
 
 
 
 
2d22901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181eb38
126fff1
 
 
 
 
 
 
0f8ddfb
126fff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181eb38
126fff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f8ddfb
2bd2d6d
2d22901
181eb38
2d22901
 
 
 
 
 
2bd2d6d
2d22901
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import streamlit as st
from PIL import Image
import numpy as np
import pandas as pd


# Simple app: convert user input into ASCII codes and binary labels

def string_to_binary_labels(s: str) -> list[int]:
    bits: list[int] = []
    for char in s:
        ascii_code = ord(char)
        char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)]
        bits.extend(char_bits)
    return bits

def image_to_binary_labels(img: Image.Image, max_pixels: int = 256) -> list[int]:
    img = img.convert("RGB")
    img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels))))
    img_array = np.array(img)
    flat = img_array.flatten()
    binarized = [(pixel >> bit) & 1 for pixel in flat for bit in range(7, -1, -1)]
    return binarized

def binary_labels_to_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image:
    total_pixels = len(binary_labels)
    if width is None or height is None:
        side = int(np.ceil(np.sqrt(total_pixels)))
        width = height = side
    needed_pixels = width * height
    if total_pixels < needed_pixels:
        binary_labels += [0] * (needed_pixels - total_pixels)
    array = np.array(binary_labels, dtype=np.uint8) * 255
    image_array = array.reshape((height, width))
    img = Image.fromarray(image_array, mode='L')
    return img

def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image:
    total_pixels = len(binary_labels) // 24
    if width is None or height is None:
        side = int(np.ceil(np.sqrt(total_pixels)))
        width = height = side
    needed_pixels = width * height
    needed_bits = needed_pixels * 24
    if len(binary_labels) < needed_bits:
        binary_labels += [0] * (needed_bits - len(binary_labels))
    pixels = []
    for i in range(0, needed_bits, 24):
        r_bits = binary_labels[i:i+8]
        g_bits = binary_labels[i+8:i+16]
        b_bits = binary_labels[i+16:i+24]
        r = sum(b << (7-j) for j, b in enumerate(r_bits))
        g = sum(b << (7-j) for j, b in enumerate(g_bits))
        b = sum(b << (7-j) for j, b in enumerate(b_bits))
        pixels.append((r, g, b))
    array = np.array(pixels, dtype=np.uint8).reshape((height, width, 3))
    img = Image.fromarray(array, mode='RGB')
    return img

mutation_site_headers = [
    3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
    3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
    4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
    4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
]

st.title("ASCII & Binary Label Converter")

tab1, tab2 = st.tabs(["Text to Binary Labels", "Image to Binary Labels"])

with tab1:
    st.write("Enter text to see its ASCII codes and corresponding binary labels:")
    user_input = st.text_input("Text Input", value="DNA")

    if user_input:
        ascii_codes = [ord(c) for c in user_input]
        binary_labels = string_to_binary_labels(user_input)

        st.subheader("ASCII Codes")
        st.write(ascii_codes)

        st.subheader("Binary Labels per Character")
        grouped_chars = [binary_labels[i:i+8] for i in range(0, len(binary_labels), 8)]
        for idx, bits in enumerate(grouped_chars):
            st.write(f"'{user_input[idx]}' → {bits}")

        st.subheader("Binary Labels (32-bit groups)")
        num_groups = (len(binary_labels) + 31) // 32
        table_data = []
        for grp_idx in range(num_groups):
            start = grp_idx * 32
            end = start + 32
            group = binary_labels[start:end]
            if len(group) < 32:
                group += [0] * (32 - len(group))
            edited_sites = sum(group)
            row = group + [edited_sites]
            table_data.append(row)

        df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
        st.dataframe(df)

        st.download_button(
            label="Download Binary Labels as CSV",
            data=','.join(str(b) for b in binary_labels),
            file_name="binary_labels.csv",
            mime="text/csv"
        )

with tab2:
    st.write("Upload an image (JPG or PNG) to convert it into binary labels:")
    uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])

    if uploaded_file is not None:
        img = Image.open(uploaded_file)
        st.image(img, caption="Uploaded Image", use_column_width=True)

        max_pixels = st.slider("Max number of pixels to encode", min_value=32, max_value=2056, value=1024, step=32)

        binary_labels = image_to_binary_labels(img, max_pixels=max_pixels)

        st.subheader("Binary Labels from Image")
        num_groups = (len(binary_labels) + 31) // 32
        table_data = []
        for grp_idx in range(num_groups):
            start = grp_idx * 32
            end = start + 32
            group = binary_labels[start:end]
            if len(group) < 32:
                group += [0] * (32 - len(group))
            edited_sites = sum(group)
            row = group + [edited_sites]
            table_data.append(row)

        df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
        st.dataframe(df)

        st.download_button(
            label="Download Image Binary Labels as CSV",
            data=','.join(str(b) for b in binary_labels),
            file_name="image_binary_labels.csv",
            mime="text/csv"
        )

        st.subheader("Reconstruct Image from Binary Labels")
        option = st.radio("Choose Reconstruction Mode", ["Grayscale", "True Color (RGB)"])

        if st.button("Reconstruct Image"):
            if option == "Grayscale":
                reconstructed_img = binary_labels_to_image(binary_labels)
            else:
                reconstructed_img = binary_labels_to_rgb_image(binary_labels)
            st.image(reconstructed_img, caption="Reconstructed Image", use_column_width=True)

# Future: integrate DNA editor mapping for each mutation site here