Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image, ImageFilter | |
import numpy as np | |
import pandas as pd | |
from streamlit_cropper import st_cropper | |
# Mutation site headers removed 3614, | |
mutation_site_headers_actual = [ | |
3244, 3297, 3350, 3399, 3455, 3509, 3562, | |
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039, | |
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455, | |
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882 | |
] | |
# Thresholds for each mutation site removed 3614: 0.091557752, | |
thresholds_actual = pd.Series({ | |
3244: 1.094293328, 3297: 0.924916122, 3350: 0.664586629, 3399: 0.91573613, | |
3455: 1.300869714, 3509: 1.821975901, 3562: 1.178862418, | |
3665: 0.298697327, 3720: 0.58379781, 3773: 0.891088481, 3824: 1.145509641, | |
3879: 0.81833191, 3933: 2.93084335, 3985: 1.593758847, 4039: 0.966055013, | |
4089: 1.465671338, 4145: 0.30309335, 4190: 1.321615138, 4245: 1.709752495, | |
4298: 0.868534701, 4349: 1.222907645, 4402: 0.58873557, 4455: 1.185522985, | |
4510: 1.266797682, 4561: 1.109913024, 4615: 1.181106084, 4668: 1.408533949, | |
4720: 0.714151142, 4773: 1.471959437, 4828: 0.95879943, 4882: 1.464503885 | |
}) | |
# Mutation site headers reordered: 4402 to 3244, 4882 to 4455 | |
mutation_site_headers = [ | |
4402, 4349, 4298, 4245, 4190, 4145, 4089, 4039, | |
3985, 3933, 3879, 3824, 3773, 3720, 3665, | |
3562, 3509, 3455, 3399, 3350, 3297, 3244, # 1β23 | |
4882, 4828, 4773, 4720, 4668, 4615, 4561, 4510, 4455 # 24β32 | |
] | |
# Thresholds reordered accordingly | |
thresholds = pd.Series({h: thresholds_actual[h] for h in mutation_site_headers}) | |
# === Utility functions === | |
# Voyager ASCII 6-bit conversion table | |
voyager_table = { | |
i: ch for i, ch in enumerate([ | |
' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', | |
'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', | |
'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2', | |
'3', '4', '5', '6', '7', '8', '9', '.', '(', ')', | |
'+', '-', '*', '/', '=', '$', '!', ':', '%', '"', | |
'#', '@', '\'', '?', '&' | |
]) | |
} | |
reverse_voyager_table = {v: k for k, v in voyager_table.items()} | |
def string_to_binary_labels(s: str) -> list[int]: | |
bits = [] | |
for char in s: | |
val = reverse_voyager_table.get(char.upper(), 0) | |
char_bits = [(val >> bit) & 1 for bit in range(5, -1, -1)] | |
bits.extend(char_bits) | |
return bits | |
def binary_labels_to_string(bits: list[int]) -> str: | |
chars = [] | |
for i in range(0, len(bits), 6): | |
chunk = bits[i:i+6] | |
if len(chunk) < 6: | |
chunk += [0] * (6 - len(chunk)) | |
val = sum(b << (5 - j) for j, b in enumerate(chunk)) | |
chars.append(voyager_table.get(val, '?')) | |
return ''.join(chars) | |
def clean_image(img: Image.Image, min_size: int = 256) -> Image.Image: | |
img = img.convert("RGB") | |
if img.width < min_size or img.height < min_size: | |
img = img.resize((min_size, min_size)) | |
img = img.filter(ImageFilter.GaussianBlur(radius=1)) | |
return img | |
def image_to_binary_labels_rgb(img: Image.Image, max_pixels: int = 256) -> list[int]: | |
img = clean_image(img) | |
img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels)))) | |
img_array = np.array(img) | |
flat_pixels = img_array.reshape(-1, 3) | |
bits = [] | |
for pixel in flat_pixels: | |
for channel in pixel: | |
channel_bits = [(channel >> bit) & 1 for bit in range(7, -1, -1)] | |
bits.extend(channel_bits) | |
return bits | |
def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image: | |
total_pixels = len(binary_labels) // 24 | |
if width is None or height is None: | |
side = int(np.ceil(np.sqrt(total_pixels))) | |
width = height = side | |
needed_pixels = width * height | |
needed_bits = needed_pixels * 24 | |
if len(binary_labels) < needed_bits: | |
binary_labels += [0] * (needed_bits - len(binary_labels)) | |
pixels = [] | |
for i in range(0, needed_bits, 24): | |
r_bits = binary_labels[i:i+8] | |
g_bits = binary_labels[i+8:i+16] | |
b_bits = binary_labels[i+16:i+24] | |
r = sum(b << (7-j) for j, b in enumerate(r_bits)) | |
g = sum(b << (7-j) for j, b in enumerate(g_bits)) | |
b = sum(b << (7-j) for j, b in enumerate(b_bits)) | |
pixels.append((r, g, b)) | |
array = np.array(pixels, dtype=np.uint8).reshape((height, width, 3)) | |
img = Image.fromarray(array, mode='RGB') | |
return img | |
# === Streamlit App === | |
st.title("ASCII & Binary Label Converter") | |
tab1, tab2 = st.tabs(["Text to Binary Labels (31)", "EF β Binary (31)"]) | |
# Tab 1: Text to Binary | |
with tab1: | |
user_input = st.text_input("Enter text", value="DNA") | |
if user_input: | |
ascii_codes = [ord(c) for c in user_input] | |
binary_labels = string_to_binary_labels(user_input) | |
st.subheader("ASCII Codes") | |
st.write(ascii_codes) | |
st.subheader("Binary Labels per Character") | |
grouped = [binary_labels[i:i+6] for i in range(0, len(binary_labels), 6)] | |
for i, bits in enumerate(grouped): | |
st.write(f"'{user_input[i]}' β {bits}") | |
st.subheader("Binary Labels (31-bit groups)") | |
groups = [] | |
for i in range(0, len(binary_labels), 31): | |
group = binary_labels[i:i+31] | |
group += [0] * (31 - len(group)) | |
groups.append(group + [sum(group)]) | |
df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"]) | |
st.dataframe(df) | |
st.download_button("Download as CSV", df.to_csv(index=False), "text_31_binary_labels.csv") | |
ascending_headers = sorted(mutation_site_headers_actual) | |
df_sorted = df[[str(h) for h in ascending_headers if str(h) in df.columns]] | |
st.subheader("Binary Labels (Ascending Order 3244 β 4882)") | |
st.dataframe(df_sorted) | |
st.download_button("Download Ascending Order CSV", df_sorted.to_csv(index=False), "text_binary_labels_ascending.csv") | |
# Tab 2: EF β Binary | |
with tab2: | |
st.write("Upload an Editing Frequency CSV or enter manually:") | |
st.write("**Note:** Please upload CSV files **without column headers**, in ascending order from 3244 to 4882.") | |
ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef") | |
if ef_file: | |
ef_df = pd.read_csv(ef_file, header=None) | |
ef_df.columns = [str(site) for site in sorted(mutation_site_headers_actual)] | |
else: | |
ef_df = pd.DataFrame(columns=[str(site) for site in sorted(mutation_site_headers_actual)]) | |
edited_df = st.data_editor(ef_df, num_rows="dynamic") | |
if st.button("Convert to Binary Labels"): | |
binary_part = pd.DataFrame() | |
for col in sorted(mutation_site_headers_actual): | |
col_str = str(col) | |
threshold = thresholds_actual[col] | |
binary_part[col_str] = (edited_df[col_str].astype(float) >= threshold).astype(int) | |
binary_reordered = binary_part[[str(h) for h in mutation_site_headers if str(h) in binary_part.columns]] | |
def color_binary(val): | |
if val == 1: return "background-color: lightgreen" | |
if val == 0: return "background-color: lightcoral" | |
return "" | |
st.subheader("Binary Labels (Reordered 4402β3244, 4882β4455)") | |
styled = binary_reordered.style.applymap(color_binary) | |
st.dataframe(styled) | |
st.download_button("Download CSV", binary_reordered.to_csv(index=False), "ef_binary_labels.csv") | |
all_bits = binary_reordered.values.flatten().tolist() | |
decoded_string = binary_labels_to_string(all_bits) | |
st.subheader("Decoded String (continuous across rows)") | |
st.write(decoded_string) | |
st.subheader("Binary Labels (Ascending 3244β4882)") | |
st.dataframe(binary_part.style.applymap(color_binary)) | |
st.download_button("Download Ascending Order CSV", binary_part.to_csv(index=False), "ef_binary_labels_ascending.csv") | |