Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image, ImageFilter | |
import numpy as np | |
import pandas as pd | |
from streamlit_cropper import st_cropper | |
# Simple app: convert user input into ASCII codes and binary labels | |
def string_to_binary_labels(s: str) -> list[int]: | |
bits: list[int] = [] | |
for char in s: | |
ascii_code = ord(char) | |
char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)] | |
bits.extend(char_bits) | |
return bits | |
def clean_image(img: Image.Image, min_size: int = 256) -> Image.Image: | |
img = img.convert("RGB") | |
if img.width < min_size or img.height < min_size: | |
img = img.resize((min_size, min_size)) | |
img = img.filter(ImageFilter.GaussianBlur(radius=1)) | |
return img | |
def image_to_binary_labels_rgb(img: Image.Image, max_pixels: int = 256) -> list[int]: | |
img = clean_image(img) | |
img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels)))) | |
img_array = np.array(img) | |
flat_pixels = img_array.reshape(-1, 3) | |
bits = [] | |
for pixel in flat_pixels: | |
for channel in pixel: | |
channel_bits = [(channel >> bit) & 1 for bit in range(7, -1, -1)] | |
bits.extend(channel_bits) | |
return bits | |
def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image: | |
total_pixels = len(binary_labels) // 24 | |
if width is None or height is None: | |
side = int(np.ceil(np.sqrt(total_pixels))) | |
width = height = side | |
needed_pixels = width * height | |
needed_bits = needed_pixels * 24 | |
if len(binary_labels) < needed_bits: | |
binary_labels += [0] * (needed_bits - len(binary_labels)) | |
pixels = [] | |
for i in range(0, needed_bits, 24): | |
r_bits = binary_labels[i:i+8] | |
g_bits = binary_labels[i+8:i+16] | |
b_bits = binary_labels[i+16:i+24] | |
r = sum(b << (7-j) for j, b in enumerate(r_bits)) | |
g = sum(b << (7-j) for j, b in enumerate(g_bits)) | |
b = sum(b << (7-j) for j, b in enumerate(b_bits)) | |
pixels.append((r, g, b)) | |
array = np.array(pixels, dtype=np.uint8).reshape((height, width, 3)) | |
img = Image.fromarray(array, mode='RGB') | |
return img | |
# Predefined headers for the 32 mutation sites | |
mutation_site_headers = [ | |
3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614, | |
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039, | |
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455, | |
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882 | |
] | |
st.title("ASCII & Binary Label Converter") | |
# Create tabs | |
tab1, tab2, tab3 = st.tabs(["Text to Binary Labels", "Image to Binary Labels", "EF -> Binary"]) | |
with tab1: | |
st.write("Enter text to see its ASCII codes and corresponding binary labels:") | |
user_input = st.text_input("Text Input", value="DNA") | |
if user_input: | |
ascii_codes = [ord(c) for c in user_input] | |
binary_labels = string_to_binary_labels(user_input) | |
st.subheader("ASCII Codes") | |
st.write(ascii_codes) | |
st.subheader("Binary Labels per Character") | |
grouped_chars = [binary_labels[i:i+8] for i in range(0, len(binary_labels), 8)] | |
for idx, bits in enumerate(grouped_chars): | |
st.write(f"'{user_input[idx]}' → {bits}") | |
st.subheader("Binary Labels (32-bit groups)") | |
num_groups = (len(binary_labels) + 31) // 32 | |
table_data = [] | |
for grp_idx in range(num_groups): | |
start = grp_idx * 32 | |
end = start + 32 | |
group = binary_labels[start:end] | |
if len(group) < 32: | |
group += [0] * (32 - len(group)) | |
edited_sites = sum(group) | |
row = group + [edited_sites] | |
table_data.append(row) | |
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"]) | |
st.dataframe(df) | |
st.download_button( | |
label="Download Binary Labels Table as CSV", | |
data=df.to_csv(index=False), | |
file_name="binary_labels_table.csv", | |
mime="text/csv" | |
) | |
with tab2: | |
st.write("Upload an image (JPG or PNG) to convert it into binary labels:") | |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
img = Image.open(uploaded_file) | |
st.image(img, caption="Uploaded Image", use_column_width=True) | |
st.subheader("Crop the image with drag and select (1:1 aspect ratio)") | |
cropped_img = st_cropper(img, realtime_update=True, box_color='blue', aspect_ratio=1.0) | |
st.image(cropped_img, caption="Cropped Image", use_column_width=True) | |
max_pixels = st.slider("Max number of pixels to encode", min_value=32, max_value=1024, value=256, step=32) | |
binary_labels = image_to_binary_labels_rgb(cropped_img, max_pixels=max_pixels) | |
st.subheader("Binary Labels from Image") | |
num_groups = (len(binary_labels) + 31) // 32 | |
table_data = [] | |
for grp_idx in range(num_groups): | |
start = grp_idx * 32 | |
end = start + 32 | |
group = binary_labels[start:end] | |
if len(group) < 32: | |
group += [0] * (32 - len(group)) | |
edited_sites = sum(group) | |
row = group + [edited_sites] | |
table_data.append(row) | |
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"]) | |
st.dataframe(df) | |
st.subheader("Reconstructed RGB Image") | |
reconstructed_img = binary_labels_to_rgb_image(binary_labels) | |
st.image(reconstructed_img, caption="Reconstructed Image", use_column_width=True) | |
st.download_button( | |
label="Download Image Binary Labels Table as CSV", | |
data=df.to_csv(index=False), | |
file_name="image_binary_labels_table.csv", | |
mime="text/csv" | |
) | |
with tab3: | |
st.write("Upload an Editing Frequency CSV or fill in manually:") | |
threshold_file = st.file_uploader("Upload Column Threshold CSV", type=["csv"], key="threshold") | |
ef_file = st.file_uploader("Upload Editing Frequency CSV", type=["csv"], key="ef") | |
if threshold_file: | |
thresholds_df = pd.read_csv(threshold_file, index_col=0) | |
thresholds = thresholds_df.squeeze() | |
if ef_file: | |
ef_df = pd.read_csv(ef_file) | |
else: | |
ef_df = pd.DataFrame(columns=thresholds.index if threshold_file else []) | |
edited_df = st.data_editor(ef_df, num_rows="dynamic") | |
if st.button("Convert to Binary Labels"): | |
if threshold_file: | |
binary_df = edited_df.ge(thresholds).astype(int) | |
st.subheader("Binary Labels") | |
st.dataframe(binary_df) | |
st.download_button( | |
label="Download Binary Labels Table as CSV", | |
data=binary_df.to_csv(index=False), | |
file_name="ef_binary_labels_table.csv", | |
mime="text/csv" | |
) | |
else: | |
st.error("Please upload the threshold CSV file first.") | |
# Future: integrate DNA editor mapping for each mutation site here | |