Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
-
from PIL import Image
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
|
6 |
# Simple app: convert user input into ASCII codes and binary labels
|
7 |
|
8 |
def string_to_binary_labels(s: str) -> list[int]:
|
9 |
-
"""
|
10 |
-
Convert a string into a flat list of binary labels (0 or 1) representing
|
11 |
-
each character's 8-bit ASCII code.
|
12 |
-
"""
|
13 |
bits: list[int] = []
|
14 |
for char in s:
|
15 |
ascii_code = ord(char)
|
@@ -17,27 +13,30 @@ def string_to_binary_labels(s: str) -> list[int]:
|
|
17 |
bits.extend(char_bits)
|
18 |
return bits
|
19 |
|
20 |
-
def
|
21 |
"""
|
22 |
-
|
23 |
-
Store full RGB values (24 bits per pixel).
|
24 |
"""
|
25 |
img = img.convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels))))
|
27 |
img_array = np.array(img)
|
28 |
flat_pixels = img_array.reshape(-1, 3)
|
29 |
|
30 |
bits = []
|
31 |
for pixel in flat_pixels:
|
32 |
-
for channel in pixel:
|
33 |
channel_bits = [(channel >> bit) & 1 for bit in range(7, -1, -1)]
|
34 |
bits.extend(channel_bits)
|
35 |
return bits
|
36 |
|
37 |
def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image:
|
38 |
-
"""
|
39 |
-
Convert binary labels (0/1) into an RGB image.
|
40 |
-
"""
|
41 |
total_pixels = len(binary_labels) // 24
|
42 |
if width is None or height is None:
|
43 |
side = int(np.ceil(np.sqrt(total_pixels)))
|
@@ -106,7 +105,7 @@ with tab1:
|
|
106 |
|
107 |
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
|
108 |
st.dataframe(df)
|
109 |
-
|
110 |
st.download_button(
|
111 |
label="Download Binary Labels Table as CSV",
|
112 |
data=df.to_csv(index=False),
|
@@ -114,7 +113,6 @@ with tab1:
|
|
114 |
mime="text/csv"
|
115 |
)
|
116 |
|
117 |
-
|
118 |
with tab2:
|
119 |
st.write("Upload an image (JPG or PNG) to convert it into binary labels:")
|
120 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
@@ -123,7 +121,7 @@ with tab2:
|
|
123 |
img = Image.open(uploaded_file)
|
124 |
st.image(img, caption="Uploaded Image", use_column_width=True)
|
125 |
|
126 |
-
max_pixels = st.slider("Max number of pixels to encode", min_value=
|
127 |
|
128 |
binary_labels = image_to_binary_labels_rgb(img, max_pixels=max_pixels)
|
129 |
|
@@ -148,9 +146,9 @@ with tab2:
|
|
148 |
st.image(reconstructed_img, caption="Reconstructed Image", use_column_width=True)
|
149 |
|
150 |
st.download_button(
|
151 |
-
label="Download Image Binary Labels as CSV",
|
152 |
-
data=
|
153 |
-
file_name="
|
154 |
mime="text/csv"
|
155 |
)
|
156 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from PIL import Image, ImageFilter
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
|
6 |
# Simple app: convert user input into ASCII codes and binary labels
|
7 |
|
8 |
def string_to_binary_labels(s: str) -> list[int]:
|
|
|
|
|
|
|
|
|
9 |
bits: list[int] = []
|
10 |
for char in s:
|
11 |
ascii_code = ord(char)
|
|
|
13 |
bits.extend(char_bits)
|
14 |
return bits
|
15 |
|
16 |
+
def clean_image(img: Image.Image, min_size: int = 256) -> Image.Image:
|
17 |
"""
|
18 |
+
Preprocess image to reduce noise: resize if needed and apply light blur.
|
|
|
19 |
"""
|
20 |
img = img.convert("RGB")
|
21 |
+
if img.width < min_size or img.height < min_size:
|
22 |
+
img = img.resize((min_size, min_size))
|
23 |
+
img = img.filter(ImageFilter.GaussianBlur(radius=1))
|
24 |
+
return img
|
25 |
+
|
26 |
+
def image_to_binary_labels_rgb(img: Image.Image, max_pixels: int = 256) -> list[int]:
|
27 |
+
img = clean_image(img)
|
28 |
img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels))))
|
29 |
img_array = np.array(img)
|
30 |
flat_pixels = img_array.reshape(-1, 3)
|
31 |
|
32 |
bits = []
|
33 |
for pixel in flat_pixels:
|
34 |
+
for channel in pixel:
|
35 |
channel_bits = [(channel >> bit) & 1 for bit in range(7, -1, -1)]
|
36 |
bits.extend(channel_bits)
|
37 |
return bits
|
38 |
|
39 |
def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image:
|
|
|
|
|
|
|
40 |
total_pixels = len(binary_labels) // 24
|
41 |
if width is None or height is None:
|
42 |
side = int(np.ceil(np.sqrt(total_pixels)))
|
|
|
105 |
|
106 |
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
|
107 |
st.dataframe(df)
|
108 |
+
|
109 |
st.download_button(
|
110 |
label="Download Binary Labels Table as CSV",
|
111 |
data=df.to_csv(index=False),
|
|
|
113 |
mime="text/csv"
|
114 |
)
|
115 |
|
|
|
116 |
with tab2:
|
117 |
st.write("Upload an image (JPG or PNG) to convert it into binary labels:")
|
118 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
|
|
121 |
img = Image.open(uploaded_file)
|
122 |
st.image(img, caption="Uploaded Image", use_column_width=True)
|
123 |
|
124 |
+
max_pixels = st.slider("Max number of pixels to encode", min_value=32, max_value=1024, value=256, step=32)
|
125 |
|
126 |
binary_labels = image_to_binary_labels_rgb(img, max_pixels=max_pixels)
|
127 |
|
|
|
146 |
st.image(reconstructed_img, caption="Reconstructed Image", use_column_width=True)
|
147 |
|
148 |
st.download_button(
|
149 |
+
label="Download Image Binary Labels Table as CSV",
|
150 |
+
data=df.to_csv(index=False),
|
151 |
+
file_name="image_binary_labels_table.csv",
|
152 |
mime="text/csv"
|
153 |
)
|
154 |
|