Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,23 @@ import numpy as np
|
|
4 |
import pandas as pd
|
5 |
from streamlit_cropper import st_cropper
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def string_to_binary_labels(s: str) -> list[int]:
|
10 |
-
bits
|
11 |
for char in s:
|
12 |
ascii_code = ord(char)
|
13 |
char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)]
|
@@ -59,22 +72,15 @@ def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, heig
|
|
59 |
img = Image.fromarray(array, mode='RGB')
|
60 |
return img
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
|
65 |
-
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
|
66 |
-
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
|
67 |
-
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
|
68 |
-
]
|
69 |
-
|
70 |
-
# Load thresholds from file
|
71 |
-
thresholds = pd.read_csv("Column_Thresholds.csv", index_col=0).squeeze()
|
72 |
|
73 |
st.title("ASCII & Binary Label Converter")
|
74 |
|
75 |
-
|
76 |
-
tab1, tab2, tab3 = st.tabs(["Text to Binary Labels", "Image to Binary Labels", "EF -> Binary"])
|
77 |
|
|
|
78 |
with tab1:
|
79 |
st.write("Enter text to see its ASCII codes and corresponding binary labels:")
|
80 |
user_input = st.text_input("Text Input", value="DNA")
|
@@ -114,6 +120,7 @@ with tab1:
|
|
114 |
mime="text/csv"
|
115 |
)
|
116 |
|
|
|
117 |
with tab2:
|
118 |
st.write("Upload an image (JPG or PNG) to convert it into binary labels:")
|
119 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
@@ -122,8 +129,8 @@ with tab2:
|
|
122 |
img = Image.open(uploaded_file)
|
123 |
st.image(img, caption="Uploaded Image", use_column_width=True)
|
124 |
|
125 |
-
st.subheader("Crop the image with drag and select (
|
126 |
-
cropped_img = st_cropper(img, realtime_update=True, box_color='blue', aspect_ratio=
|
127 |
|
128 |
st.image(cropped_img, caption="Cropped Image", use_column_width=True)
|
129 |
|
@@ -158,6 +165,7 @@ with tab2:
|
|
158 |
mime="text/csv"
|
159 |
)
|
160 |
|
|
|
161 |
with tab3:
|
162 |
st.write("Upload an Editing Frequency CSV or fill in manually:")
|
163 |
ef_file = st.file_uploader("Upload Editing Frequency CSV", type=["csv"], key="ef")
|
@@ -172,23 +180,24 @@ with tab3:
|
|
172 |
|
173 |
if st.button("Convert to Binary Labels"):
|
174 |
common_cols = list(set(edited_df.columns) & set(thresholds.index))
|
175 |
-
|
176 |
-
|
|
|
|
|
177 |
binary_df = pd.concat([non_binary_part, binary_part], axis=1)
|
178 |
|
179 |
def highlight_binary(val):
|
180 |
color = 'lightgreen' if val == 1 else 'lightcoral'
|
181 |
return f'background-color: {color}'
|
182 |
|
183 |
-
styled_binary_df = binary_df.style.applymap(highlight_binary, subset=
|
184 |
|
185 |
st.subheader("Binary Labels")
|
186 |
st.dataframe(styled_binary_df)
|
|
|
187 |
st.download_button(
|
188 |
label="Download Binary Labels Table as CSV",
|
189 |
data=binary_df.to_csv(index=False),
|
190 |
file_name="ef_binary_labels_table.csv",
|
191 |
mime="text/csv"
|
192 |
)
|
193 |
-
|
194 |
-
# Future: integrate DNA editor mapping for each mutation site here
|
|
|
4 |
import pandas as pd
|
5 |
from streamlit_cropper import st_cropper
|
6 |
|
7 |
+
# Predefined headers for the 32 mutation sites
|
8 |
+
mutation_site_headers = [
|
9 |
+
3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
|
10 |
+
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
|
11 |
+
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
|
12 |
+
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
|
13 |
+
]
|
14 |
+
|
15 |
+
# Load thresholds from file
|
16 |
+
thresholds = pd.read_csv("Column_Thresholds.csv", index_col=0).squeeze()
|
17 |
+
|
18 |
+
# -----------------------------------------
|
19 |
+
# Utility functions
|
20 |
+
# -----------------------------------------
|
21 |
|
22 |
def string_to_binary_labels(s: str) -> list[int]:
|
23 |
+
bits = []
|
24 |
for char in s:
|
25 |
ascii_code = ord(char)
|
26 |
char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)]
|
|
|
72 |
img = Image.fromarray(array, mode='RGB')
|
73 |
return img
|
74 |
|
75 |
+
# -----------------------------------------
|
76 |
+
# Streamlit App
|
77 |
+
# -----------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
st.title("ASCII & Binary Label Converter")
|
80 |
|
81 |
+
tab1, tab2, tab3 = st.tabs(["Text to Binary Labels", "Image to Binary Labels", "EF → Binary"])
|
|
|
82 |
|
83 |
+
# ================= Tab 1 ===================
|
84 |
with tab1:
|
85 |
st.write("Enter text to see its ASCII codes and corresponding binary labels:")
|
86 |
user_input = st.text_input("Text Input", value="DNA")
|
|
|
120 |
mime="text/csv"
|
121 |
)
|
122 |
|
123 |
+
# ================= Tab 2 ===================
|
124 |
with tab2:
|
125 |
st.write("Upload an image (JPG or PNG) to convert it into binary labels:")
|
126 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
|
|
129 |
img = Image.open(uploaded_file)
|
130 |
st.image(img, caption="Uploaded Image", use_column_width=True)
|
131 |
|
132 |
+
st.subheader("Crop the image with drag and select (Free aspect ratio)")
|
133 |
+
cropped_img = st_cropper(img, realtime_update=True, box_color='blue', aspect_ratio=None)
|
134 |
|
135 |
st.image(cropped_img, caption="Cropped Image", use_column_width=True)
|
136 |
|
|
|
165 |
mime="text/csv"
|
166 |
)
|
167 |
|
168 |
+
# ================= Tab 3 ===================
|
169 |
with tab3:
|
170 |
st.write("Upload an Editing Frequency CSV or fill in manually:")
|
171 |
ef_file = st.file_uploader("Upload Editing Frequency CSV", type=["csv"], key="ef")
|
|
|
180 |
|
181 |
if st.button("Convert to Binary Labels"):
|
182 |
common_cols = list(set(edited_df.columns) & set(thresholds.index))
|
183 |
+
numeric_cols = edited_df[common_cols].select_dtypes(include=[np.number]).columns.tolist()
|
184 |
+
|
185 |
+
binary_part = edited_df[numeric_cols].ge(thresholds[numeric_cols]).astype(int)
|
186 |
+
non_binary_part = edited_df.drop(columns=numeric_cols, errors='ignore')
|
187 |
binary_df = pd.concat([non_binary_part, binary_part], axis=1)
|
188 |
|
189 |
def highlight_binary(val):
|
190 |
color = 'lightgreen' if val == 1 else 'lightcoral'
|
191 |
return f'background-color: {color}'
|
192 |
|
193 |
+
styled_binary_df = binary_df.style.applymap(highlight_binary, subset=numeric_cols)
|
194 |
|
195 |
st.subheader("Binary Labels")
|
196 |
st.dataframe(styled_binary_df)
|
197 |
+
|
198 |
st.download_button(
|
199 |
label="Download Binary Labels Table as CSV",
|
200 |
data=binary_df.to_csv(index=False),
|
201 |
file_name="ef_binary_labels_table.csv",
|
202 |
mime="text/csv"
|
203 |
)
|
|
|
|