wenjun99 commited on
Commit
edcca9a
·
verified ·
1 Parent(s): a89c0f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -10
app.py CHANGED
@@ -6,6 +6,8 @@ from streamlit_cropper import st_cropper
6
 
7
  # Simple app: convert user input into ASCII codes and binary labels
8
 
 
 
9
  def string_to_binary_labels(s: str) -> list[int]:
10
  bits: list[int] = []
11
  for char in s:
@@ -59,14 +61,6 @@ def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, heig
59
  img = Image.fromarray(array, mode='RGB')
60
  return img
61
 
62
- # Predefined headers for the 32 mutation sites
63
- mutation_site_headers = [
64
- 3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
65
- 3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
66
- 4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
67
- 4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
68
- ]
69
-
70
  # Load thresholds from file
71
  thresholds = pd.read_csv("Column_Thresholds.csv", index_col=0).squeeze()
72
 
@@ -175,8 +169,16 @@ with tab3:
175
  binary_part = edited_df[common_cols].ge(thresholds[common_cols]).astype(int)
176
  non_binary_part = edited_df.drop(columns=common_cols, errors='ignore')
177
  binary_df = pd.concat([non_binary_part, binary_part], axis=1)
 
 
 
 
 
 
 
178
  st.subheader("Binary Labels")
179
- st.dataframe(binary_df)
 
180
  st.download_button(
181
  label="Download Binary Labels Table as CSV",
182
  data=binary_df.to_csv(index=False),
@@ -184,4 +186,4 @@ with tab3:
184
  mime="text/csv"
185
  )
186
 
187
- # Future: integrate DNA editor mapping for each mutation site here
 
6
 
7
  # Simple app: convert user input into ASCII codes and binary labels
8
 
9
+ # (functions string_to_binary_labels, clean_image, image_to_binary_labels_rgb, binary_labels_to_rgb_image stay unchanged)
10
+
11
  def string_to_binary_labels(s: str) -> list[int]:
12
  bits: list[int] = []
13
  for char in s:
 
61
  img = Image.fromarray(array, mode='RGB')
62
  return img
63
 
 
 
 
 
 
 
 
 
64
  # Load thresholds from file
65
  thresholds = pd.read_csv("Column_Thresholds.csv", index_col=0).squeeze()
66
 
 
169
  binary_part = edited_df[common_cols].ge(thresholds[common_cols]).astype(int)
170
  non_binary_part = edited_df.drop(columns=common_cols, errors='ignore')
171
  binary_df = pd.concat([non_binary_part, binary_part], axis=1)
172
+
173
+ def highlight_binary(val):
174
+ color = 'lightgreen' if val == 1 else 'lightcoral'
175
+ return f'background-color: {color}'
176
+
177
+ styled_binary_df = binary_df.style.applymap(highlight_binary, subset=common_cols)
178
+
179
  st.subheader("Binary Labels")
180
+ st.dataframe(styled_binary_df)
181
+
182
  st.download_button(
183
  label="Download Binary Labels Table as CSV",
184
  data=binary_df.to_csv(index=False),
 
186
  mime="text/csv"
187
  )
188
 
189
+ # Future: integrate DNA editor mapping for each mutation site here