import streamlit as st from PIL import Image import numpy as np import pandas as pd # Simple app: convert user input into ASCII codes and binary labels def string_to_binary_labels(s: str) -> list[int]: """ Convert a string into a flat list of binary labels (0 or 1) representing each character's 8-bit ASCII code. """ bits: list[int] = [] for char in s: ascii_code = ord(char) char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)] bits.extend(char_bits) return bits def image_to_binary_labels_rgb(img: Image.Image, max_pixels: int = 256) -> list[int]: """ Convert an RGB image to binary labels (0/1). Store full RGB values (24 bits per pixel). """ img = img.convert("RGB") img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels)))) img_array = np.array(img) flat_pixels = img_array.reshape(-1, 3) bits = [] for pixel in flat_pixels: for channel in pixel: # R, G, B channel_bits = [(channel >> bit) & 1 for bit in range(7, -1, -1)] bits.extend(channel_bits) return bits def binary_labels_to_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image: """ Convert binary labels (0/1) into a grayscale image. """ total_pixels = len(binary_labels) if width is None or height is None: side = int(np.ceil(np.sqrt(total_pixels))) width = height = side needed_pixels = width * height if total_pixels < needed_pixels: binary_labels += [0] * (needed_pixels - total_pixels) array = np.array(binary_labels, dtype=np.uint8) * 255 image_array = array.reshape((height, width)) img = Image.fromarray(image_array, mode='L') return img def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image: """ Convert binary labels (0/1) into an RGB image. """ total_pixels = len(binary_labels) // 24 if width is None or height is None: side = int(np.ceil(np.sqrt(total_pixels))) width = height = side needed_pixels = width * height needed_bits = needed_pixels * 24 if len(binary_labels) < needed_bits: binary_labels += [0] * (needed_bits - len(binary_labels)) pixels = [] for i in range(0, needed_bits, 24): r_bits = binary_labels[i:i+8] g_bits = binary_labels[i+8:i+16] b_bits = binary_labels[i+16:i+24] r = sum(b << (7-j) for j, b in enumerate(r_bits)) g = sum(b << (7-j) for j, b in enumerate(g_bits)) b = sum(b << (7-j) for j, b in enumerate(b_bits)) pixels.append((r, g, b)) array = np.array(pixels, dtype=np.uint8).reshape((height, width, 3)) img = Image.fromarray(array, mode='RGB') return img # Predefined headers for the 32 mutation sites mutation_site_headers = [ 3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614, 3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039, 4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455, 4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882 ] st.title("ASCII & Binary Label Converter") # Create tabs tab1, tab2 = st.tabs(["Text to Binary Labels", "Image to Binary Labels"]) with tab1: st.write("Enter text to see its ASCII codes and corresponding binary labels:") user_input = st.text_input("Text Input", value="DNA") if user_input: ascii_codes = [ord(c) for c in user_input] binary_labels = string_to_binary_labels(user_input) st.subheader("ASCII Codes") st.write(ascii_codes) st.subheader("Binary Labels per Character") grouped_chars = [binary_labels[i:i+8] for i in range(0, len(binary_labels), 8)] for idx, bits in enumerate(grouped_chars): st.write(f"'{user_input[idx]}' → {bits}") st.subheader("Binary Labels (32-bit groups)") num_groups = (len(binary_labels) + 31) // 32 table_data = [] for grp_idx in range(num_groups): start = grp_idx * 32 end = start + 32 group = binary_labels[start:end] if len(group) < 32: group += [0] * (32 - len(group)) edited_sites = sum(group) row = group + [edited_sites] table_data.append(row) df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"]) st.dataframe(df) st.download_button( label="Download Binary Labels as CSV", data=','.join(str(b) for b in binary_labels), file_name="binary_labels.csv", mime="text/csv" ) with tab2: st.write("Upload an image (JPG or PNG) to convert it into binary labels:") uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: img = Image.open(uploaded_file) st.image(img, caption="Uploaded Image", use_column_width=True) max_pixels = st.slider("Max number of pixels to encode", min_value=32, max_value=1024, value=256, step=32) binary_labels = image_to_binary_labels_rgb(img, max_pixels=max_pixels) st.subheader("Binary Labels from Image") num_groups = (len(binary_labels) + 31) // 32 table_data = [] for grp_idx in range(num_groups): start = grp_idx * 32 end = start + 32 group = binary_labels[start:end] if len(group) < 32: group += [0] * (32 - len(group)) edited_sites = sum(group) row = group + [edited_sites] table_data.append(row) df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"]) st.dataframe(df) st.download_button( label="Download Image Binary Labels as CSV", data=','.join(str(b) for b in binary_labels), file_name="image_binary_labels.csv", mime="text/csv" ) st.subheader("Reconstruct Image from Binary Labels") option = st.radio("Choose Reconstruction Mode", ["Grayscale", "True Color (RGB)"]) if st.button("Reconstruct Image"): if option == "Grayscale": reconstructed_img = binary_labels_to_image(binary_labels) else: reconstructed_img = binary_labels_to_rgb_image(binary_labels) st.image(reconstructed_img, caption="Reconstructed Image", use_column_width=True) # Future: integrate DNA editor mapping for each mutation site here