Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import numpy as np
|
|
4 |
import pandas as pd
|
5 |
from streamlit_cropper import st_cropper
|
6 |
|
7 |
-
#
|
8 |
mutation_site_headers = [
|
9 |
3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
|
10 |
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
|
@@ -12,45 +12,19 @@ mutation_site_headers = [
|
|
12 |
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
|
13 |
]
|
14 |
|
15 |
-
#
|
16 |
thresholds = pd.Series({
|
17 |
-
3244: 1.094293328,
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
3665: 0.298697327,
|
26 |
-
3720: 0.58379781,
|
27 |
-
3773: 0.891088481,
|
28 |
-
3824: 1.145509641,
|
29 |
-
3879: 0.81833191,
|
30 |
-
3933: 2.93084335,
|
31 |
-
3985: 1.593758847,
|
32 |
-
4039: 0.966055013,
|
33 |
-
4089: 1.465671338,
|
34 |
-
4145: 0.30309335,
|
35 |
-
4190: 1.321615138,
|
36 |
-
4245: 1.709752495,
|
37 |
-
4298: 0.868534701,
|
38 |
-
4349: 1.222907645,
|
39 |
-
4402: 0.58873557,
|
40 |
-
4455: 1.185522985,
|
41 |
-
4510: 1.266797682,
|
42 |
-
4561: 1.109913024,
|
43 |
-
4615: 1.181106084,
|
44 |
-
4668: 1.408533949,
|
45 |
-
4720: 0.714151142,
|
46 |
-
4773: 1.471959437,
|
47 |
-
4828: 0.95879943,
|
48 |
-
4882: 1.464503885
|
49 |
})
|
50 |
|
51 |
-
#
|
52 |
-
# Utility functions
|
53 |
-
# -----------------------------------------
|
54 |
|
55 |
def string_to_binary_labels(s: str) -> list[int]:
|
56 |
bits = []
|
@@ -105,19 +79,14 @@ def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, heig
|
|
105 |
img = Image.fromarray(array, mode='RGB')
|
106 |
return img
|
107 |
|
108 |
-
#
|
109 |
-
# Streamlit App
|
110 |
-
# -----------------------------------------
|
111 |
|
112 |
st.title("ASCII & Binary Label Converter")
|
113 |
-
|
114 |
tab1, tab2, tab3 = st.tabs(["Text to Binary Labels", "Image to Binary Labels", "EF → Binary"])
|
115 |
|
116 |
-
#
|
117 |
with tab1:
|
118 |
-
st.
|
119 |
-
user_input = st.text_input("Text Input", value="DNA")
|
120 |
-
|
121 |
if user_input:
|
122 |
ascii_codes = [ord(c) for c in user_input]
|
123 |
binary_labels = string_to_binary_labels(user_input)
|
@@ -126,118 +95,78 @@ with tab1:
|
|
126 |
st.write(ascii_codes)
|
127 |
|
128 |
st.subheader("Binary Labels per Character")
|
129 |
-
|
130 |
-
for
|
131 |
-
st.write(f"'{user_input[
|
132 |
|
133 |
st.subheader("Binary Labels (32-bit groups)")
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
group = binary_labels[start:end]
|
140 |
-
if len(group) < 32:
|
141 |
-
group += [0] * (32 - len(group))
|
142 |
-
edited_sites = sum(group)
|
143 |
-
row = group + [edited_sites]
|
144 |
-
table_data.append(row)
|
145 |
-
|
146 |
-
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
|
147 |
-
st.dataframe(df)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
file_name="binary_labels_table.csv",
|
153 |
-
mime="text/csv"
|
154 |
-
)
|
155 |
|
156 |
-
#
|
157 |
with tab2:
|
158 |
-
st.
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
img =
|
163 |
-
st.image(
|
164 |
-
|
165 |
-
st.subheader("Crop the image with drag and select (Free aspect ratio)")
|
166 |
-
cropped_img = st_cropper(img, realtime_update=True, box_color='blue', aspect_ratio=None)
|
167 |
|
168 |
-
st.
|
169 |
-
|
170 |
-
max_pixels = st.slider("Max number of pixels to encode", min_value=32, max_value=1024, value=256, step=32)
|
171 |
-
|
172 |
-
binary_labels = image_to_binary_labels_rgb(cropped_img, max_pixels=max_pixels)
|
173 |
|
174 |
st.subheader("Binary Labels from Image")
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
if len(group) < 32:
|
182 |
-
group += [0] * (32 - len(group))
|
183 |
-
edited_sites = sum(group)
|
184 |
-
row = group + [edited_sites]
|
185 |
-
table_data.append(row)
|
186 |
-
|
187 |
-
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
|
188 |
st.dataframe(df)
|
189 |
|
190 |
-
st.subheader("Reconstructed
|
191 |
-
|
192 |
-
st.image(
|
193 |
-
|
194 |
-
st.download_button(
|
195 |
-
label="Download Image Binary Labels Table as CSV",
|
196 |
-
data=df.to_csv(index=False),
|
197 |
-
file_name="image_binary_labels_table.csv",
|
198 |
-
mime="text/csv"
|
199 |
-
)
|
200 |
|
201 |
-
#
|
202 |
with tab3:
|
203 |
-
st.write("Upload an Editing Frequency CSV or
|
204 |
-
ef_file = st.file_uploader("Upload
|
205 |
|
206 |
if ef_file:
|
207 |
ef_df = pd.read_csv(ef_file)
|
208 |
ef_df = ef_df.loc[:, ~ef_df.columns.str.contains('^Unnamed')]
|
209 |
else:
|
210 |
-
ef_df = pd.DataFrame(columns=thresholds.index)
|
211 |
|
212 |
edited_df = st.data_editor(ef_df, num_rows="dynamic")
|
213 |
|
214 |
if st.button("Convert to Binary Labels"):
|
215 |
-
|
216 |
-
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
222 |
binary_df = pd.concat([non_binary_part, binary_part], axis=1)
|
223 |
-
|
224 |
-
def highlight_binary(val):
|
225 |
-
if val == 1:
|
226 |
-
return 'background-color: lightgreen'
|
227 |
-
elif val == 0:
|
228 |
-
return 'background-color: lightcoral'
|
229 |
-
else:
|
230 |
-
return ''
|
231 |
-
|
232 |
-
styled_binary_df = binary_df.style.applymap(highlight_binary, subset=numeric_cols)
|
233 |
-
|
234 |
-
st.subheader("Binary Labels")
|
235 |
-
st.dataframe(styled_binary_df) # ✅ Display thresholded binary table
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
mime="text/csv"
|
242 |
-
)
|
243 |
|
|
|
|
|
|
|
|
|
|
4 |
import pandas as pd
|
5 |
from streamlit_cropper import st_cropper
|
6 |
|
7 |
+
# Mutation site headers
|
8 |
mutation_site_headers = [
|
9 |
3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
|
10 |
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
|
|
|
12 |
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
|
13 |
]
|
14 |
|
15 |
+
# Thresholds for each mutation site
|
16 |
thresholds = pd.Series({
|
17 |
+
3244: 1.094293328, 3297: 0.924916122, 3350: 0.664586629, 3399: 0.91573613,
|
18 |
+
3455: 1.300869714, 3509: 1.821975901, 3562: 1.178862418, 3614: 0.091557752,
|
19 |
+
3665: 0.298697327, 3720: 0.58379781, 3773: 0.891088481, 3824: 1.145509641,
|
20 |
+
3879: 0.81833191, 3933: 2.93084335, 3985: 1.593758847, 4039: 0.966055013,
|
21 |
+
4089: 1.465671338, 4145: 0.30309335, 4190: 1.321615138, 4245: 1.709752495,
|
22 |
+
4298: 0.868534701, 4349: 1.222907645, 4402: 0.58873557, 4455: 1.185522985,
|
23 |
+
4510: 1.266797682, 4561: 1.109913024, 4615: 1.181106084, 4668: 1.408533949,
|
24 |
+
4720: 0.714151142, 4773: 1.471959437, 4828: 0.95879943, 4882: 1.464503885
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
})
|
26 |
|
27 |
+
# === Utility functions ===
|
|
|
|
|
28 |
|
29 |
def string_to_binary_labels(s: str) -> list[int]:
|
30 |
bits = []
|
|
|
79 |
img = Image.fromarray(array, mode='RGB')
|
80 |
return img
|
81 |
|
82 |
+
# === Streamlit App ===
|
|
|
|
|
83 |
|
84 |
st.title("ASCII & Binary Label Converter")
|
|
|
85 |
tab1, tab2, tab3 = st.tabs(["Text to Binary Labels", "Image to Binary Labels", "EF → Binary"])
|
86 |
|
87 |
+
# Tab 1: Text to Binary
|
88 |
with tab1:
|
89 |
+
user_input = st.text_input("Enter text", value="DNA")
|
|
|
|
|
90 |
if user_input:
|
91 |
ascii_codes = [ord(c) for c in user_input]
|
92 |
binary_labels = string_to_binary_labels(user_input)
|
|
|
95 |
st.write(ascii_codes)
|
96 |
|
97 |
st.subheader("Binary Labels per Character")
|
98 |
+
grouped = [binary_labels[i:i+8] for i in range(0, len(binary_labels), 8)]
|
99 |
+
for i, bits in enumerate(grouped):
|
100 |
+
st.write(f"'{user_input[i]}' → {bits}")
|
101 |
|
102 |
st.subheader("Binary Labels (32-bit groups)")
|
103 |
+
groups = []
|
104 |
+
for i in range(0, len(binary_labels), 32):
|
105 |
+
group = binary_labels[i:i+32]
|
106 |
+
group += [0] * (32 - len(group))
|
107 |
+
groups.append(group + [sum(group)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
|
110 |
+
st.dataframe(df)
|
111 |
+
st.download_button("Download as CSV", df.to_csv(index=False), "text_binary_labels.csv")
|
|
|
|
|
|
|
112 |
|
113 |
+
# Tab 2: Image to Binary
|
114 |
with tab2:
|
115 |
+
uploaded = st.file_uploader("Upload an image (jpg/png)", type=["jpg", "jpeg", "png"])
|
116 |
+
if uploaded:
|
117 |
+
img = Image.open(uploaded)
|
118 |
+
st.image(img, caption="Original", use_column_width=True)
|
119 |
+
cropped = st_cropper(img, realtime_update=True, box_color="blue", aspect_ratio=None)
|
120 |
+
st.image(cropped, caption="Cropped", use_column_width=True)
|
|
|
|
|
|
|
121 |
|
122 |
+
max_pixels = st.slider("Max pixels to encode", 32, 1024, 256, 32)
|
123 |
+
binary_labels = image_to_binary_labels_rgb(cropped, max_pixels=max_pixels)
|
|
|
|
|
|
|
124 |
|
125 |
st.subheader("Binary Labels from Image")
|
126 |
+
groups = []
|
127 |
+
for i in range(0, len(binary_labels), 32):
|
128 |
+
group = binary_labels[i:i+32]
|
129 |
+
group += [0] * (32 - len(group))
|
130 |
+
groups.append(group + [sum(group)])
|
131 |
+
df = pd.DataFrame(groups, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
st.dataframe(df)
|
133 |
|
134 |
+
st.subheader("Reconstructed Image")
|
135 |
+
recon = binary_labels_to_rgb_image(binary_labels)
|
136 |
+
st.image(recon, caption="Reconstructed", use_column_width=True)
|
137 |
+
st.download_button("Download CSV", df.to_csv(index=False), "image_binary_labels.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
# Tab 3: EF → Binary
|
140 |
with tab3:
|
141 |
+
st.write("Upload an Editing Frequency CSV or enter manually:")
|
142 |
+
ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef")
|
143 |
|
144 |
if ef_file:
|
145 |
ef_df = pd.read_csv(ef_file)
|
146 |
ef_df = ef_df.loc[:, ~ef_df.columns.str.contains('^Unnamed')]
|
147 |
else:
|
148 |
+
ef_df = pd.DataFrame(columns=[str(k) for k in thresholds.index])
|
149 |
|
150 |
edited_df = st.data_editor(ef_df, num_rows="dynamic")
|
151 |
|
152 |
if st.button("Convert to Binary Labels"):
|
153 |
+
int_map = {str(k): k for k in thresholds.index}
|
154 |
+
matching_cols = [col for col in edited_df.columns if col in int_map]
|
155 |
|
156 |
+
binary_part = pd.DataFrame()
|
157 |
+
for col in matching_cols:
|
158 |
+
col_threshold = thresholds[int_map[col]]
|
159 |
+
binary_part[col] = (edited_df[col].astype(float) >= col_threshold).astype(int)
|
160 |
+
|
161 |
+
non_binary_part = edited_df.drop(columns=matching_cols, errors='ignore')
|
162 |
binary_df = pd.concat([non_binary_part, binary_part], axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
def color_binary(val):
|
165 |
+
if val == 1: return "background-color: lightgreen"
|
166 |
+
if val == 0: return "background-color: lightcoral"
|
167 |
+
return ""
|
|
|
|
|
168 |
|
169 |
+
st.subheader("Binary Labels")
|
170 |
+
styled = binary_df.style.applymap(color_binary, subset=matching_cols)
|
171 |
+
st.dataframe(styled)
|
172 |
+
st.download_button("Download CSV", binary_df.to_csv(index=False), "ef_binary_labels.csv")
|