Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,25 +4,25 @@ import numpy as np
|
|
4 |
import pandas as pd
|
5 |
from streamlit_cropper import st_cropper
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
# Mutation site headers reordered: 4402 to 3244, 4882 to 4455
|
28 |
mutation_site_headers = [
|
@@ -172,6 +172,14 @@ with tab1:
|
|
172 |
st.dataframe(df_31)
|
173 |
st.download_button("Download as CSV", df_31.to_csv(index=False), "text_32_binary_labels.csv")
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
# st.subheader("Binary Labels (27-bit groups)")
|
176 |
# groups = []
|
177 |
# for i in range(0, len(binary_labels), 27):
|
@@ -210,56 +218,99 @@ with tab2:
|
|
210 |
st.download_button("Download CSV", df.to_csv(index=False), "image_binary_labels.csv")
|
211 |
|
212 |
# Tab 3: EF → Binary
|
213 |
-
with
|
214 |
st.write("Upload an Editing Frequency CSV or enter manually:")
|
215 |
-
st.write("**Note:** Please upload CSV files **without column headers
|
216 |
ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef")
|
217 |
-
|
|
|
|
|
218 |
if ef_file:
|
219 |
-
# Read CSV without headers and assign mutation site headers
|
220 |
ef_df = pd.read_csv(ef_file, header=None)
|
221 |
-
ef_df.columns = [str(site) for site in
|
222 |
else:
|
223 |
-
ef_df = pd.DataFrame(columns=[str(site) for site in
|
224 |
-
|
225 |
|
226 |
edited_df = st.data_editor(ef_df, num_rows="dynamic")
|
227 |
|
228 |
if st.button("Convert to Binary Labels"):
|
229 |
-
|
230 |
-
matching_cols = [col for col in edited_df.columns if col in int_map]
|
231 |
-
|
232 |
binary_part = pd.DataFrame()
|
233 |
-
for col in
|
234 |
-
|
235 |
-
|
|
|
236 |
|
237 |
-
|
238 |
-
|
239 |
|
240 |
def color_binary(val):
|
241 |
if val == 1: return "background-color: lightgreen"
|
242 |
if val == 0: return "background-color: lightcoral"
|
243 |
return ""
|
244 |
|
245 |
-
st.subheader("Binary Labels")
|
246 |
-
styled =
|
247 |
st.dataframe(styled)
|
248 |
-
st.download_button("Download CSV",
|
249 |
-
|
250 |
-
#
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import pandas as pd
|
5 |
from streamlit_cropper import st_cropper
|
6 |
|
7 |
+
# Mutation site headers removed 3614,
|
8 |
+
mutation_site_headers_actual = [
|
9 |
+
3244, 3297, 3350, 3399, 3455, 3509, 3562,
|
10 |
+
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
|
11 |
+
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
|
12 |
+
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
|
13 |
+
]
|
14 |
+
|
15 |
+
# Thresholds for each mutation site removed 3614: 0.091557752,
|
16 |
+
thresholds_actual = pd.Series({
|
17 |
+
3244: 1.094293328, 3297: 0.924916122, 3350: 0.664586629, 3399: 0.91573613,
|
18 |
+
3455: 1.300869714, 3509: 1.821975901, 3562: 1.178862418,
|
19 |
+
3665: 0.298697327, 3720: 0.58379781, 3773: 0.891088481, 3824: 1.145509641,
|
20 |
+
3879: 0.81833191, 3933: 2.93084335, 3985: 1.593758847, 4039: 0.966055013,
|
21 |
+
4089: 1.465671338, 4145: 0.30309335, 4190: 1.321615138, 4245: 1.709752495,
|
22 |
+
4298: 0.868534701, 4349: 1.222907645, 4402: 0.58873557, 4455: 1.185522985,
|
23 |
+
4510: 1.266797682, 4561: 1.109913024, 4615: 1.181106084, 4668: 1.408533949,
|
24 |
+
4720: 0.714151142, 4773: 1.471959437, 4828: 0.95879943, 4882: 1.464503885
|
25 |
+
})
|
26 |
|
27 |
# Mutation site headers reordered: 4402 to 3244, 4882 to 4455
|
28 |
mutation_site_headers = [
|
|
|
172 |
st.dataframe(df_31)
|
173 |
st.download_button("Download as CSV", df_31.to_csv(index=False), "text_32_binary_labels.csv")
|
174 |
|
175 |
+
# Additional table with ascending mutation site headers (3244 to 4455)
|
176 |
+
ascending_headers = sorted([h for h in mutation_site_headers if h <= 4455])
|
177 |
+
df_sorted = df[[str(h) for h in ascending_headers if str(h) in df.columns]]
|
178 |
+
st.subheader("Binary Labels (Ascending Order 3244 → 4455)")
|
179 |
+
st.dataframe(df_sorted)
|
180 |
+
st.download_button("Download Ascending Order CSV", df_sorted.to_csv(index=False), "text_binary_labels_ascending.csv")
|
181 |
+
|
182 |
+
|
183 |
# st.subheader("Binary Labels (27-bit groups)")
|
184 |
# groups = []
|
185 |
# for i in range(0, len(binary_labels), 27):
|
|
|
218 |
st.download_button("Download CSV", df.to_csv(index=False), "image_binary_labels.csv")
|
219 |
|
220 |
# Tab 3: EF → Binary
|
221 |
+
with st.tabs(["Text to Binary Labels", "Image to Binary Labels", "EF → Binary"])[2]:
|
222 |
st.write("Upload an Editing Frequency CSV or enter manually:")
|
223 |
+
st.write("**Note:** Please upload CSV files **without column headers**, in ascending order from 3244 to 4455.")
|
224 |
ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef")
|
225 |
+
|
226 |
+
ascending_input_headers = sorted([h for h in mutation_site_headers if 3244 <= h <= 4455])
|
227 |
+
|
228 |
if ef_file:
|
|
|
229 |
ef_df = pd.read_csv(ef_file, header=None)
|
230 |
+
ef_df.columns = [str(site) for site in ascending_input_headers]
|
231 |
else:
|
232 |
+
ef_df = pd.DataFrame(columns=[str(site) for site in ascending_input_headers])
|
|
|
233 |
|
234 |
edited_df = st.data_editor(ef_df, num_rows="dynamic")
|
235 |
|
236 |
if st.button("Convert to Binary Labels"):
|
237 |
+
# Use ascending headers to create binary first
|
|
|
|
|
238 |
binary_part = pd.DataFrame()
|
239 |
+
for col in ascending_input_headers:
|
240 |
+
col_str = str(col)
|
241 |
+
threshold = thresholds[col]
|
242 |
+
binary_part[col_str] = (edited_df[col_str].astype(float) >= threshold).astype(int)
|
243 |
|
244 |
+
# Rearranged for output: custom order from mutation_site_headers
|
245 |
+
binary_reordered = binary_part[[str(h) for h in mutation_site_headers if str(h) in binary_part.columns]]
|
246 |
|
247 |
def color_binary(val):
|
248 |
if val == 1: return "background-color: lightgreen"
|
249 |
if val == 0: return "background-color: lightcoral"
|
250 |
return ""
|
251 |
|
252 |
+
st.subheader("Binary Labels (Reordered 4402→3244, 4882→4455)")
|
253 |
+
styled = binary_reordered.style.applymap(color_binary)
|
254 |
st.dataframe(styled)
|
255 |
+
st.download_button("Download CSV", binary_reordered.to_csv(index=False), "ef_binary_labels.csv")
|
256 |
+
|
257 |
+
# Reconstruct original string from binary values (flatten row-wise)
|
258 |
+
for i, row in binary_reordered.iterrows():
|
259 |
+
binary_sequence = row.tolist()
|
260 |
+
text = binary_labels_to_string(binary_sequence)
|
261 |
+
st.write(f"Row {i+1} decoded string: {text}")
|
262 |
+
|
263 |
+
# # Tab 3: EF → Binary
|
264 |
+
# with tab3:
|
265 |
+
# st.write("Upload an Editing Frequency CSV or enter manually:")
|
266 |
+
# st.write("**Note:** Please upload CSV files **without column headers**. Just the 31 editing frequencies per row.")
|
267 |
+
# ef_file = st.file_uploader("Upload EF CSV", type=["csv"], key="ef")
|
268 |
+
|
269 |
+
# if ef_file:
|
270 |
+
# # Read CSV without headers and assign mutation site headers
|
271 |
+
# ef_df = pd.read_csv(ef_file, header=None)
|
272 |
+
# ef_df.columns = [str(site) for site in mutation_site_headers]
|
273 |
+
# else:
|
274 |
+
# ef_df = pd.DataFrame(columns=[str(site) for site in mutation_site_headers])
|
275 |
+
|
276 |
+
|
277 |
+
# edited_df = st.data_editor(ef_df, num_rows="dynamic")
|
278 |
+
|
279 |
+
# if st.button("Convert to Binary Labels"):
|
280 |
+
# int_map = {str(k): k for k in thresholds.index}
|
281 |
+
# matching_cols = [col for col in edited_df.columns if col in int_map]
|
282 |
+
|
283 |
+
# binary_part = pd.DataFrame()
|
284 |
+
# for col in matching_cols:
|
285 |
+
# col_threshold = thresholds[int_map[col]]
|
286 |
+
# binary_part[col] = (edited_df[col].astype(float) >= col_threshold).astype(int)
|
287 |
+
|
288 |
+
# non_binary_part = edited_df.drop(columns=matching_cols, errors='ignore')
|
289 |
+
# binary_df = pd.concat([non_binary_part, binary_part], axis=1)
|
290 |
+
|
291 |
+
# def color_binary(val):
|
292 |
+
# if val == 1: return "background-color: lightgreen"
|
293 |
+
# if val == 0: return "background-color: lightcoral"
|
294 |
+
# return ""
|
295 |
+
|
296 |
+
# st.subheader("Binary Labels")
|
297 |
+
# styled = binary_df.style.applymap(color_binary, subset=matching_cols)
|
298 |
+
# st.dataframe(styled)
|
299 |
+
# st.download_button("Download CSV", binary_df.to_csv(index=False), "ef_binary_labels.csv")
|
300 |
+
|
301 |
+
# # Convert to bitstrings and strings
|
302 |
+
# binary_strings = []
|
303 |
+
# decoded_strings = []
|
304 |
+
# for _, row in binary_part.iterrows():
|
305 |
+
# bitlist = row.values.tolist()
|
306 |
+
# bitstring = ''.join(str(b) for b in bitlist)
|
307 |
+
# binary_strings.append(bitstring)
|
308 |
+
# decoded_strings.append(binary_labels_to_string(bitlist))
|
309 |
+
|
310 |
+
# st.subheader("Binary as Bitstrings")
|
311 |
+
# for b in binary_strings:
|
312 |
+
# st.code(b)
|
313 |
+
|
314 |
+
# st.subheader("Decoded Voyager Strings")
|
315 |
+
# for s in decoded_strings:
|
316 |
+
# st.write(s)
|