Upload 3 files
Browse files- src/agent.py +28 -0
- src/audio_utils.py +40 -0
- src/deep_model.py +25 -0
src/agent.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# agent.py
|
2 |
+
|
3 |
+
from audio_utils import record_audio, transcribe_audio
|
4 |
+
from deep_model import predict_accent
|
5 |
+
|
6 |
+
class AccentAgent:
|
7 |
+
def __init__(self, duration=5):
|
8 |
+
self.duration = duration
|
9 |
+
self.audio_path = None
|
10 |
+
self.transcription = ""
|
11 |
+
self.accent = ""
|
12 |
+
|
13 |
+
def run(self):
|
14 |
+
print("[Agent] Starting recording...")
|
15 |
+
self.audio_path = record_audio(duration=self.duration)
|
16 |
+
print("[Agent] Audio recorded at:", self.audio_path)
|
17 |
+
|
18 |
+
print("[Agent] Predicting accent...")
|
19 |
+
self.accent = predict_accent(self.audio_path)
|
20 |
+
|
21 |
+
print("[Agent] Transcribing audio...")
|
22 |
+
self.transcription = transcribe_audio(self.audio_path)
|
23 |
+
|
24 |
+
return {
|
25 |
+
"audio_path": self.audio_path,
|
26 |
+
"accent": self.accent,
|
27 |
+
"transcription": self.transcription
|
28 |
+
}
|
src/audio_utils.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# audio_utils.py
|
2 |
+
|
3 |
+
from transformers import pipeline
|
4 |
+
from pydub import AudioSegment
|
5 |
+
import os
|
6 |
+
import uuid
|
7 |
+
import sounddevice as sd
|
8 |
+
from scipy.io.wavfile import write
|
9 |
+
import tempfile
|
10 |
+
|
11 |
+
# تحميل نموذج Whisper
|
12 |
+
whisper_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
13 |
+
|
14 |
+
def convert_to_wav(audio_file):
|
15 |
+
sound = AudioSegment.from_file(audio_file)
|
16 |
+
temp_filename = f"temp_{uuid.uuid4()}.wav"
|
17 |
+
sound.export(temp_filename, format="wav")
|
18 |
+
return temp_filename
|
19 |
+
|
20 |
+
def transcribe_audio(audio_path):
|
21 |
+
if not audio_path.endswith(".wav"):
|
22 |
+
audio_path = convert_to_wav(audio_path)
|
23 |
+
|
24 |
+
result = whisper_pipeline(audio_path)
|
25 |
+
text = result['text']
|
26 |
+
|
27 |
+
# يمكن حذف الملف المؤقت بعد النسخ
|
28 |
+
if os.path.exists(audio_path):
|
29 |
+
os.remove(audio_path)
|
30 |
+
|
31 |
+
return text
|
32 |
+
|
33 |
+
def record_audio(duration=5, fs=16000):
|
34 |
+
"""يسجل صوت من المايك لمدة محددة"""
|
35 |
+
recording = sd.rec(int(duration * fs), samplerate=fs, channels=1, dtype='int16')
|
36 |
+
sd.wait()
|
37 |
+
|
38 |
+
temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
39 |
+
write(temp_wav.name, fs, recording)
|
40 |
+
return temp_wav.name
|
src/deep_model.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# deep_model.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import librosa
|
5 |
+
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
|
6 |
+
|
7 |
+
MODEL_ID = "ylacombe/accent-classifier"
|
8 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_ID)
|
9 |
+
model = AutoModelForAudioClassification.from_pretrained(MODEL_ID)
|
10 |
+
|
11 |
+
# لاحظ أن الترتيب يعتمد على ترتيب تصنيفات النموذج نفسه
|
12 |
+
label_map = {
|
13 |
+
4: "england",
|
14 |
+
14: "us"
|
15 |
+
}
|
16 |
+
|
17 |
+
def predict_accent(audio_path: str) -> str:
|
18 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
19 |
+
inputs = feature_extractor(audio, sampling_rate=16000, return_tensors="pt")
|
20 |
+
|
21 |
+
with torch.no_grad():
|
22 |
+
logits = model(**inputs).logits
|
23 |
+
predicted_id = torch.argmax(logits, dim=-1).item()
|
24 |
+
|
25 |
+
return label_map.get(predicted_id, f"Unknown (ID: {predicted_id})")
|