agentChat / app.py
whackthejacker's picture
Update app.py
ecff730 verified
import os
import time
import random
import gradio as gui
from gradio.themes.utils import colors
from dataclasses import dataclass
from typing import Dict, Iterator, List, Literal, Optional, TypedDict, NotRequired
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch
# Custom theme for the Gradio interface
custom_theme = gui.themes.Default(
primary_hue=colors.blue,
secondary_hue=colors.green,
neutral_hue=colors.gray,
font=[gui.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
).set(
body_background_fill="#FFFFFF",
body_text_color="#1F2937",
button_primary_background_fill="#2D7FF9",
button_primary_background_fill_hover="#1A56F0",
button_secondary_background_fill="#10B981",
button_secondary_background_fill_hover="#059669",
block_title_text_color="#6B7280",
block_label_text_color="#6B7280",
background_fill_primary="#F9FAFB",
background_fill_secondary="#F3F4F6",
)
@dataclass
class UserMessage:
content: str
role: Literal["user", "assistant"]
metadata: Optional[Dict] = None
options: Optional[List[Dict]] = None
class Metadata(TypedDict):
title: NotRequired[str]
id: NotRequired[int | str]
parent_id: NotRequired[int | str]
log: NotRequired[str]
duration: NotRequired[float]
status: NotRequired[Literal["pending", "done"]]
MODEL_IDENTIFIER = "smol-ai/SmolLM2-135M-Instruct"
@torch.inference_mode()
def load_model():
tokenizer = AutoTokenizer.from_pretrained(MODEL_IDENTIFIER)
model = AutoModelForCausalLM.from_pretrained(
MODEL_IDENTIFIER,
torch_dtype=torch.float16,
device_map="auto"
)
return model, tokenizer
print("Loading model and tokenizer...")
model_instance, tokenizer_instance = load_model()
print("Model and tokenizer loaded!")
def build_conversation_prompt(current_message: str, history: List[UserMessage]) -> str:
conversation_history = [
f"{message.role.upper()}: {message.content}" for message in history
]
conversation_history.append(f"USER: {current_message}")
conversation_history.append("ASSISTANT: ")
return "\n".join(conversation_history)
def stream_chat_response(user_input: str, history: List[UserMessage]) -> Iterator[List[UserMessage]]:
prompt_text = build_conversation_prompt(user_input, history)
inputs = tokenizer_instance(prompt_text, return_tensors="pt").to(model_instance.device)
response_streamer = TextIteratorStreamer(
tokenizer_instance,
timeout=10.0,
skip_prompt=True,
skip_special_tokens=True
)
generation_params = {
"input_ids": inputs.input_ids,
"attention_mask": inputs.attention_mask,
"max_new_tokens": 512,
"temperature": 0.7,
"top_p": 0.9,
"streamer": response_streamer,
"do_sample": True,
}
thread = Thread(target=model_instance.generate, kwargs=generation_params)
thread.start()
thought_buffer = ""
updated_history = history + [UserMessage(role="user", content=user_input)]
updated_history.append(create_thinking_message())
yield updated_history
for _ in range(random.randint(3, 6)):
thought_buffer = update_thoughts(thought_buffer, updated_history)
yield updated_history
time.sleep(0.5)
finalize_thinking(updated_history, thought_buffer)
yield updated_history
for text_chunk in response_streamer:
updated_history[-1] = UserMessage(role="assistant", content=updated_history[-1].content + text_chunk)
yield updated_history
time.sleep(0.01)
def create_thinking_message() -> UserMessage:
return UserMessage(
role="assistant",
content="",
metadata={
"title": "🧠 Thinking...",
"status": "pending"
}
)
def update_thoughts(thought_buffer: str, updated_history: List[UserMessage]) -> str:
thought_segments = [
"Analyzing the user's query...",
"Retrieving relevant information...",
"Considering different perspectives...",
"Formulating a coherent response...",
"Checking for accuracy and completeness...",
"Organizing thoughts in a logical structure..."
]
thought_buffer += random.choice(thought_segments) + " "
updated_history[-1] = UserMessage(
role="assistant",
content=thought_buffer,
metadata={
"title": "🧠 Thinking...",
"status": "pending"
}
)
return thought_buffer
def finalize_thinking(updated_history: List[UserMessage], thought_buffer: str):
thinking_duration = time.time() - start_time
updated_history[-1] = UserMessage(
role="assistant",
content=thought_buffer,
metadata={
"title": "🧠 Thinking Process",
"status": "done",
"duration": round(thinking_duration, 2)
}
)
updated_history.append(UserMessage(role="assistant", content=""))
def reset_chat() -> List[UserMessage]:
return []
style_sheet = """
.message-user {
background-color: #F3F4F6 !important;
border-radius: 10px;
padding: 10px;
margin: 8px 0;
}
.message-assistant {
background-color: #F9FAFB !important;
border-radius: 10px;
padding: 10px;
margin: 8px 0;
border-left: 3px solid #2D7FF9;
}
.thinking-box {
background-color: #F0F9FF !important;
border: 1px solid #BAE6FD;
border-radius: 6px;
}
.chat-container {
height: calc(100vh - 230px);
overflow-y: auto;
padding: 16px;
}
.input-container {
position: sticky;
bottom: 0;
background-color: #FFFFFF;
padding: 16px;
border-top: 1px solid #E5E7EB;
}
@media (max-width: 640px) {
.chat-container {
height: calc(100vh - 200px);
}
}
footer {
display: none !important;
}
"""
with gui.Blocks(theme=custom_theme, css=style_sheet) as demo_interface:
gui.HTML("""
<div style="text-align: center; margin-bottom: 1rem">
<h1 style="font-size: 2.5rem; font-weight: 600; color: #1F2937">SmolLM2 Chat</h1>
<p style="font-size: 1.1rem; color: #6B7280">
Chat with SmolLM2-135M-Instruct: A small but capable AI assistant
</p>
</div>
""")
chat_interface = gui.Chatbot(
value=[],
avatar_images=(None, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot.png"),
show_label=False,
container=True,
height=600,
elem_classes="chat-container",
type="messages"
)
with gui.Row(elem_classes="input-container"):
with gui.Column(scale=20):
message_input = gui.Textbox(
show_label=False,
placeholder="Type your message here...",
container=False,
lines=2
)
with gui.Column(scale=1, min_width=50):
send_button = gui.Button("Send", variant="primary")
with gui.Row():
clear_button = gui.Button("Clear Chat", variant="secondary")
message_input.submit(
stream_chat_response,
[message_input, chat_interface],
[chat_interface],
queue=True
).then(
lambda: "",
None,
[message_input],
queue=False
)
send_button.click(
stream_chat_response,
[message_input, chat_interface],
[chat_interface],
queue=True
).then(
lambda: "",
None,
[message_input],
queue=False
)
clear_button.click(
reset_chat,
None,
[chat_interface],
queue=False
)
message_input.submit(lambda: "", None, [message_input])
if __name__ == "__main__":
demo_interface.launch(
server_name="0.0.0.0",
server_port=5000,
share=False
)