qwen3 / app.py
what2up's picture
update
59b0e70
raw
history blame
1.68 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM
def greet(input):
model_name = "Qwen/Qwen3-8B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer.save_pretrained("./qwen3")
model.save_pretrained("./qwen3")
# prepare the model input
prompt = "Give me a short introduction to large language model."
prompt = input
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True, # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(
output_ids[:index], skip_special_tokens=True
).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
# print("thinking content:", thinking_content)
# print("content:", content)
return "thinking content:" + thinking_content + "\n" + "content:" + content
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()