# 安装依赖 # !pip install transformers accelerate bitsandbytes huggingface_hub import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM, AutoProcessor, AutoModelForVision2Seq import torch # 加载模型(使用 4-bit 量化直接加载,避免 OOM) model_name = "ByteDance-Seed/UI-TARS-1.5-7B" # 或 UI-TARS-1.5-7B(如果你有权访问) model = AutoModelForVision2Seq.from_pretrained( model_name, device_map="auto", # ⬅️ 4-bit 量化 torch_dtype=torch.float16, quantization_config={ "load_in_4bit": True, "bnb_4bit_quant_type": "nf4", # ✅ 必须是 nf4(CPU 只支持这个) "bnb_4bit_compute_dtype": torch.float16, "bnb_4bit_use_double_quant": True, # 可选:减少 0.4% 体积 }, low_cpu_mem_usage=True ) tokenizer = AutoTokenizer.from_pretrained(model_name) # # 保存量化后的模型到本地(或 Hugging Face) # model.save_pretrained("./ui-tars-8b-4bit") # tokenizer.save_pretrained("./ui-tars-8b-4bit") def greet(input): # prepare the model input prompt = "Give me a short introduction to large language model." prompt = input messages = [{"role": "user", "content": prompt}] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True, # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate(**model_inputs, max_new_tokens=32768) output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :].tolist() # parsing thinking content try: # rindex finding 151668 () index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode( output_ids[:index], skip_special_tokens=True ).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") # print("thinking content:", thinking_content) # print("content:", content) return "thinking content:" + thinking_content + "\n" + "content:" + content demo = gr.Interface(fn=greet, inputs="text", outputs="text") demo.launch()