import gradio as gr from fastai.vision.all import * import skimage title = "Open/Closed Door Classifier" description = "A classifier trained using fastai on search images of open and closed doors." \ "Created for Lesson 2 in the fastai course." examples = ['./open-door.jpeg', './crack_2.jpg', './red_arch.jpg', './green.jpg', './red.jpg', './opening_door.jpg', './inside.jpg', './cracked_3.jpg', './old.jpg', './blue.jpg', './closed-door.jpeg', './crack_1.jpg'] learn = load_learner('door_model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} iface = gr.Interface( fn=predict, inputs=gr.Image(shape=(512, 512)), outputs=gr.Label(num_top_classes=3), title=title, description=description, examples=examples, interpretation="default").queue().launch()