Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +67 -0
- packages.txt +1 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import DiffusionPipeline
|
| 4 |
+
from transformers import (
|
| 5 |
+
WhisperForConditionalGeneration,
|
| 6 |
+
WhisperProcessor,
|
| 7 |
+
pipeline,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
|
| 12 |
+
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
model = WhisperForConditionalGeneration.from_pretrained("whispy/whisper_italian").to(device)
|
| 15 |
+
processor = WhisperProcessor.from_pretrained("whispy/whisper_italian")
|
| 16 |
+
|
| 17 |
+
pipe = pipeline(model="whispy/whisper_italian")
|
| 18 |
+
|
| 19 |
+
diffuser_pipeline = DiffusionPipeline.from_pretrained(
|
| 20 |
+
"CompVis/stable-diffusion-v1-4",
|
| 21 |
+
custom_pipeline="speech_to_image_diffusion",
|
| 22 |
+
speech_model="whispy/whisper_italian",
|
| 23 |
+
speech_processor=processor,
|
| 24 |
+
use_auth_token=MY_SECRET_TOKEN,
|
| 25 |
+
revision="fp16",
|
| 26 |
+
torch_dtype=torch.float16,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
diffuser_pipeline.enable_attention_slicing()
|
| 30 |
+
diffuser_pipeline = diffuser_pipeline.to(device)
|
| 31 |
+
|
| 32 |
+
def transcribe(audio):
|
| 33 |
+
text = pipe(audio)["text"]
|
| 34 |
+
return text
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
#ββββββββββββββββββββββββββββββββββββββββββββ
|
| 38 |
+
# GRADIO SETUP
|
| 39 |
+
title = "Speech to Diffusion β’ Community Pipeline"
|
| 40 |
+
description = """
|
| 41 |
+
<p style='text-align: center;'>This demo can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.<br />
|
| 42 |
+
Community examples consist of both inference and training examples that have been added by the community.<br />
|
| 43 |
+
<a href='https://github.com/huggingface/diffusers/tree/main/examples/community#speech-to-image' target='_blank'> Click here for more information about community pipelines </a>
|
| 44 |
+
</p>
|
| 45 |
+
"""
|
| 46 |
+
article = """
|
| 47 |
+
<p style='text-align: center;'>Community pipeline by Mikail Duzenli β’ Gradio demo by Sylvain Filoni & Ahsen Khaliq<p>
|
| 48 |
+
"""
|
| 49 |
+
audio_input = gr.Audio(source="microphone", type="filepath")
|
| 50 |
+
image_output = gr.Image()
|
| 51 |
+
|
| 52 |
+
def speech_to_text(audio_sample):
|
| 53 |
+
|
| 54 |
+
#process_audio = whisper.load_audio(audio_sample)
|
| 55 |
+
process_audio = transcribe(audio_sample)
|
| 56 |
+
output = diffuser_pipeline(process_audio)
|
| 57 |
+
|
| 58 |
+
print(f"""
|
| 59 |
+
ββββββββ
|
| 60 |
+
output: {output}
|
| 61 |
+
ββββββββ
|
| 62 |
+
""")
|
| 63 |
+
|
| 64 |
+
return output.images[0]
|
| 65 |
+
|
| 66 |
+
demo = gr.Interface(fn=speech_to_text, inputs=audio_input, outputs=image_output, title=title, description=description, article=article)
|
| 67 |
+
demo.launch()
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
pytube
|
| 4 |
+
sentencepiece
|