File size: 18,564 Bytes
d4d998a b1cb07d d4d998a b1cb07d d4d998a b1cb07d d4d998a 3c01baa d4d998a 3c01baa d4d998a b1cb07d d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa b1cb07d d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa b1cb07d d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa b1cb07d d4d998a b1cb07d 3c01baa d4d998a b1cb07d d4d998a b1cb07d 3c01baa b1cb07d 3c01baa b1cb07d 3c01baa b1cb07d 3c01baa b1cb07d d4d998a b1cb07d d4d998a b1cb07d d4d998a 3c01baa b1cb07d d4d998a 3c01baa b1cb07d 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
"""
GuardBench Leaderboard Application
"""
import os
import json
import tempfile
import logging
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from apscheduler.schedulers.background import BackgroundScheduler
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
GUARDBENCH_COLUMN,
DISPLAY_COLS,
METRIC_COLS,
HIDDEN_COLS,
NEVER_HIDDEN_COLS,
CATEGORIES,
TEST_TYPES,
ModelType,
Precision,
WeightType,
GuardModelType
)
from src.display.formatting import styled_message, styled_error, styled_warning
from src.envs import (
ADMIN_USERNAME,
ADMIN_PASSWORD,
RESULTS_DATASET_ID,
SUBMITTER_TOKEN,
TOKEN,
DATA_PATH
)
from src.populate import get_leaderboard_df, get_category_leaderboard_df
from src.submission.submit import process_submission
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Ensure data directory exists
os.makedirs(DATA_PATH, exist_ok=True)
# Available benchmark versions
BENCHMARK_VERSIONS = ["v0"]
CURRENT_VERSION = "v0"
# Initialize leaderboard data
try:
logger.info("Initializing leaderboard data...")
LEADERBOARD_DF = get_leaderboard_df(version=CURRENT_VERSION)
logger.info(f"Loaded leaderboard with {len(LEADERBOARD_DF)} entries")
except Exception as e:
logger.error(f"Error loading leaderboard data: {e}")
LEADERBOARD_DF = pd.DataFrame()
print(DISPLAY_COLS)
def init_leaderboard(dataframe):
"""
Initialize the leaderboard component.
"""
if dataframe is None or dataframe.empty:
# Create an empty dataframe with the right columns
columns = [getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS]
dataframe = pd.DataFrame(columns=columns)
logger.warning("Initializing empty leaderboard")
return Leaderboard(
value=dataframe,
datatype=[getattr(GUARDBENCH_COLUMN, col).type for col in DISPLAY_COLS],
select_columns=SelectColumns(
default_selection=[getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS],
cant_deselect=[getattr(GUARDBENCH_COLUMN, col).name for col in NEVER_HIDDEN_COLS],
label="Select Columns to Display:",
),
search_columns=[GUARDBENCH_COLUMN.model_name.name],
hide_columns=[getattr(GUARDBENCH_COLUMN, col).name for col in HIDDEN_COLS],
filter_columns=[
ColumnFilter(GUARDBENCH_COLUMN.model_type.name, type="checkboxgroup", label="Model types"),
],
interactive=False,
)
def submit_results(
model_name: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
submission_file: tempfile._TemporaryFileWrapper,
version: str,
guard_model_type: GuardModelType
):
"""
Handle submission of results with model metadata.
"""
if submission_file is None:
return styled_error("No submission file provided")
if not model_name:
return styled_error("Model name is required")
if not model_type:
return styled_error("Please select a model type")
file_path = submission_file.name
logger.info(f"Received submission for model {model_name}: {file_path}")
# Add metadata to the submission
metadata = {
"model_name": model_name,
"base_model": base_model,
"revision": revision if revision else "main",
"precision": precision,
"weight_type": weight_type,
"model_type": model_type,
"version": version,
"guard_model_type": guard_model_type
}
# Process the submission
result = process_submission(file_path, metadata, version=version)
# Refresh the leaderboard data
global LEADERBOARD_DF
try:
logger.info(f"Refreshing leaderboard data after submission for version {version}...")
LEADERBOARD_DF = get_leaderboard_df(version=version)
logger.info("Refreshed leaderboard data after submission")
except Exception as e:
logger.error(f"Error refreshing leaderboard data: {e}")
return result
def refresh_data(version=CURRENT_VERSION):
"""
Refresh the leaderboard data from HuggingFace.
"""
global LEADERBOARD_DF
try:
logger.info(f"Performing scheduled refresh of leaderboard data for version {version}...")
new_df = get_leaderboard_df(version=version)
if new_df is not None and not new_df.empty:
LEADERBOARD_DF = new_df
logger.info("Scheduled refresh of leaderboard data completed")
else:
logger.warning("Refresh returned empty data, keeping existing data")
# If empty, create a dataframe with correct columns
if LEADERBOARD_DF is None or LEADERBOARD_DF.empty:
columns = [getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS]
LEADERBOARD_DF = pd.DataFrame(columns=columns)
except Exception as e:
logger.error(f"Error in scheduled refresh: {e}")
# Ensure we have at least an empty dataframe with correct columns
if LEADERBOARD_DF is None or LEADERBOARD_DF.empty:
columns = [getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS]
LEADERBOARD_DF = pd.DataFrame(columns=columns)
return LEADERBOARD_DF
def update_leaderboards(version):
"""
Update all leaderboard components with data for the selected version.
"""
new_df = get_leaderboard_df(version=version)
category_dfs = [get_category_leaderboard_df(category, version=version) for category in CATEGORIES]
return [init_leaderboard(new_df)] + [init_leaderboard(df) for df in category_dfs]
def create_performance_plot(selected_models, category, metric="f1_binary", version=CURRENT_VERSION):
"""
Create a radar plot comparing model performance for selected models.
"""
if category == "📊 Overall Performance":
df = get_leaderboard_df(version=version)
else:
df = get_category_leaderboard_df(category, version=version)
if df.empty:
return go.Figure()
# Filter for selected models
df = df[df['model_name'].isin(selected_models)]
# Get the relevant metric columns
metric_cols = [col for col in df.columns if metric in col]
# Create figure
fig = go.Figure()
# Custom colors for different models
colors = ['#8FCCCC', '#C2A4B6', '#98B4A6', '#B68F7C'] # Pale Cyan, Pale Pink, Pale Green, Pale Orange
# Add traces for each model
for idx, model in enumerate(selected_models):
model_data = df[df['model_name'] == model]
if not model_data.empty:
values = model_data[metric_cols].values[0].tolist()
# Add the first value again at the end to complete the polygon
values = values + [values[0]]
# Clean up test type names
categories = [col.replace(f'_{metric}', '') for col in metric_cols]
# Add the first category again at the end to complete the polygon
categories = categories + [categories[0]]
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories,
name=model,
line_color=colors[idx % len(colors)],
fill='toself'
))
# Update layout with all settings at once
fig.update_layout(
paper_bgcolor='#000000',
plot_bgcolor='#000000',
font={'color': '#ffffff'},
title={
'text': f'{category} - {metric.upper()} Score Comparison',
'font': {'color': '#ffffff', 'size': 24}
},
polar=dict(
bgcolor='#000000',
radialaxis=dict(
visible=True,
range=[0, 1],
gridcolor='#333333',
linecolor='#333333',
tickfont={'color': '#ffffff'},
),
angularaxis=dict(
gridcolor='#333333',
linecolor='#333333',
tickfont={'color': '#ffffff'},
)
),
height=600,
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="right",
x=0.99,
bgcolor='rgba(0,0,0,0.5)',
font={'color': '#ffffff'}
)
)
return fig
def update_model_choices(version):
"""
Update the list of available models for the given version.
"""
df = get_leaderboard_df(version=version)
if df.empty:
return []
return sorted(df['model_name'].unique().tolist())
def update_visualization(selected_models, selected_category, selected_metric, version):
"""
Update the visualization based on user selections.
"""
if not selected_models:
return go.Figure()
return create_performance_plot(selected_models, selected_category, selected_metric, version)
# Create Gradio app
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
tabs = gr.Tabs(elem_classes="tab-buttons")
with tabs:
with gr.TabItem("🏅 Leaderboard", elem_id="guardbench-leaderboard-tab", id=0):
with gr.Row():
refresh_button = gr.Button("Refresh Leaderboard", scale=3)
version_selector = gr.Dropdown(
choices=BENCHMARK_VERSIONS,
label="Benchmark Version",
value=CURRENT_VERSION,
interactive=True,
elem_classes="version-selector",
scale=1
)
# Create tabs for each category
with gr.Tabs(elem_classes="category-tabs") as category_tabs:
# First tab for average metrics across all categories
with gr.TabItem("📊 Overall Performance", elem_id="overall-tab"):
leaderboard = init_leaderboard(LEADERBOARD_DF)
# Create a tab for each category
for category in CATEGORIES:
with gr.TabItem(f"{category}", elem_id=f"category-{category.lower().replace(' ', '-')}-tab"):
category_df = get_category_leaderboard_df(category, version=CURRENT_VERSION)
category_leaderboard = init_leaderboard(category_df)
# Refresh button functionality
refresh_button.click(
fn=lambda: [
init_leaderboard(get_leaderboard_df(version=version_selector.value)),
*[init_leaderboard(get_category_leaderboard_df(category, version=version_selector.value)) for category in CATEGORIES]
],
inputs=[],
outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)]
)
with gr.TabItem("📊 Visualize", elem_id="guardbench-viz-tab", id=1):
with gr.Row():
with gr.Column():
viz_version_selector = gr.Dropdown(
choices=BENCHMARK_VERSIONS,
label="Benchmark Version",
value=CURRENT_VERSION,
interactive=True
)
model_selector = gr.Dropdown(
choices=update_model_choices(CURRENT_VERSION),
label="Select Models to Compare",
multiselect=True,
interactive=True
)
with gr.Column():
# Add Overall Performance to categories
viz_categories = ["📊 Overall Performance"] + CATEGORIES
category_selector = gr.Dropdown(
choices=viz_categories,
label="Select Category",
value=viz_categories[0],
interactive=True
)
metric_selector = gr.Dropdown(
choices=["f1_binary", "precision_binary", "recall_binary"],
label="Select Metric",
value="f1_binary",
interactive=True
)
plot_output = gr.Plot()
# Update visualization when any selector changes
for control in [viz_version_selector, model_selector, category_selector, metric_selector]:
control.change(
fn=update_visualization,
inputs=[model_selector, category_selector, metric_selector, viz_version_selector],
outputs=plot_output
)
# Update model choices when version changes
viz_version_selector.change(
fn=update_model_choices,
inputs=[viz_version_selector],
outputs=[model_selector]
)
with gr.TabItem("📝 About", elem_id="guardbench-about-tab", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit", elem_id="guardbench-submit-tab", id=3):
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text")
with gr.Column(scale=1):
# Add version selector specifically for the submission tab
submission_version_selector = gr.Dropdown(
choices=BENCHMARK_VERSIONS,
label="Benchmark Version",
value=CURRENT_VERSION,
interactive=True,
elem_classes="version-selector"
)
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
guard_model_type = gr.Dropdown(
choices=[t.name for t in GuardModelType],
label="Guard model type",
multiselect=False,
value=GuardModelType.LLM_REGEXP.name,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
with gr.Row():
file_input = gr.File(
label="Upload JSONL Results File",
file_types=[".jsonl"]
)
submit_button = gr.Button("Submit Results")
result_output = gr.Markdown()
submit_button.click(
fn=submit_results,
inputs=[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
file_input,
submission_version_selector,
guard_model_type
],
outputs=result_output
)
# Version selector functionality
version_selector.change(
fn=update_leaderboards,
inputs=[version_selector],
outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)]
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=10,
elem_id="citation-button",
show_copy_button=True,
)
with gr.Accordion("ℹ️ Dataset Information", open=False):
dataset_info = gr.Markdown(f"""
## Dataset Information
Results are stored in the HuggingFace dataset: [{RESULTS_DATASET_ID}](https://huggingface.co/datasets/{RESULTS_DATASET_ID})
Last updated: {pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S UTC")}
""")
scheduler = BackgroundScheduler()
scheduler.add_job(lambda: refresh_data(version=CURRENT_VERSION), 'interval', minutes=30)
scheduler.start()
# Launch the app
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|