File size: 8,161 Bytes
d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa b1cb07d d4d998a 3c01baa b1cb07d d4d998a b1cb07d 3c01baa d4d998a 3c01baa d4d998a b1cb07d d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a 3c01baa d4d998a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
"""
Process and transform GuardBench leaderboard data.
"""
import json
import os
import pandas as pd
from datetime import datetime
from typing import Dict, List, Any, Tuple
from src.display.utils import CATEGORIES, TEST_TYPES, METRICS
def load_leaderboard_data(file_path: str) -> Dict:
"""
Load the leaderboard data from a JSON file.
"""
if not os.path.exists(file_path):
version = "v0"
if "_v" in file_path:
version = file_path.split("_")[-1].split(".")[0]
return {"entries": [], "last_updated": datetime.now().isoformat(), "version": version}
with open(file_path, 'r') as f:
data = json.load(f)
# Ensure version field exists
if "version" not in data:
version = "v0"
if "_v" in file_path:
version = file_path.split("_")[-1].split(".")[0]
data["version"] = version
return data
def save_leaderboard_data(data: Dict, file_path: str) -> None:
"""
Save the leaderboard data to a JSON file.
"""
# Ensure the directory exists
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Update the last_updated timestamp
data["last_updated"] = datetime.now().isoformat()
# Ensure version is set
if "version" not in data:
version = "v0"
if "_v" in file_path:
version = file_path.split("_")[-1].split(".")[0]
data["version"] = version
with open(file_path, 'w') as f:
json.dump(data, f, indent=2)
def process_submission(submission_data: List[Dict]) -> List[Dict]:
"""
Process submission data and convert it to leaderboard entries.
"""
entries = []
for item in submission_data:
# Create a new entry for the leaderboard
entry = {
"model_name": item.get("model_name", "Unknown Model"),
"per_category_metrics": {},
"avg_metrics": {},
"submission_date": datetime.now().isoformat(),
"version": item.get("version", "v0")
}
# Copy model metadata
for key in ["model_type", "base_model", "revision", "precision", "weight_type"]:
if key in item:
entry[key] = item[key]
# Process per-category metrics
if "per_category_metrics" in item:
entry["per_category_metrics"] = item["per_category_metrics"]
# Process average metrics
if "avg_metrics" in item:
entry["avg_metrics"] = item["avg_metrics"]
entries.append(entry)
return entries
def leaderboard_to_dataframe(leaderboard_data: Dict) -> pd.DataFrame:
"""
Convert leaderboard data to a pandas DataFrame for display.
"""
rows = []
for entry in leaderboard_data.get("entries", []):
model_name = entry.get("model_name", "Unknown Model")
# Extract average metrics for main display
row = {
"model_name": model_name,
"model_type": entry.get("model_type", "Unknown"),
"submission_date": entry.get("submission_date", ""),
"version": entry.get("version", "v0"),
"guard_model_type": entry.get("guard_model_type", "llm_regexp").lower()
}
# Add additional metadata fields if present
for key in ["base_model", "revision", "precision", "weight_type"]:
if key in entry:
row[key] = entry[key]
# CASE 1: Metrics are flat in the root
for key, value in entry.items():
if any(test_type in key for test_type in TEST_TYPES) or key in ["average_f1", "average_recall", "average_precision"]:
row[key] = value
# CASE 2: Metrics are in avg_metrics structure
avg_metrics = entry.get("avg_metrics", {})
if avg_metrics:
for test_type in TEST_TYPES:
if test_type in avg_metrics:
metrics = avg_metrics[test_type]
for metric in METRICS:
if metric in metrics:
col_name = f"{test_type}_{metric}"
row[col_name] = metrics[metric]
# Also add non-binary version for F1 scores
if metric == "f1_binary":
row[f"{test_type}_f1"] = metrics[metric]
# Calculate averages if not present
if "average_f1" not in row:
f1_values = []
for test_type in TEST_TYPES:
if test_type in avg_metrics and "f1_binary" in avg_metrics[test_type]:
f1_values.append(avg_metrics[test_type]["f1_binary"])
if f1_values:
row["average_f1"] = sum(f1_values) / len(f1_values)
if "average_recall" not in row:
recall_values = []
for test_type in TEST_TYPES:
if test_type in avg_metrics and "recall_binary" in avg_metrics[test_type]:
recall_values.append(avg_metrics[test_type]["recall_binary"])
if recall_values:
row["average_recall"] = sum(recall_values) / len(recall_values)
if "average_precision" not in row:
precision_values = []
for test_type in TEST_TYPES:
if test_type in avg_metrics and "precision_binary" in avg_metrics[test_type]:
precision_values.append(avg_metrics[test_type]["precision_binary"])
if precision_values:
row["average_precision"] = sum(precision_values) / len(precision_values)
rows.append(row)
# Create DataFrame and sort by average F1 score
df = pd.DataFrame(rows)
# Ensure all expected columns exist
for test_type in TEST_TYPES:
if f"{test_type}_f1" not in df.columns:
df[f"{test_type}_f1"] = None
if f"{test_type}_f1_binary" not in df.columns:
df[f"{test_type}_f1_binary"] = None
if f"{test_type}_recall_binary" not in df.columns:
df[f"{test_type}_recall_binary"] = None
if f"{test_type}_precision_binary" not in df.columns:
df[f"{test_type}_precision_binary"] = None
if not df.empty and "average_f1" in df.columns:
df = df.sort_values(by="average_f1", ascending=False)
return df
def add_entries_to_leaderboard(leaderboard_data: Dict, new_entries: List[Dict]) -> Dict:
"""
Add new entries to the leaderboard, replacing any with the same model name.
"""
# Create a mapping of existing entries by model name and version
existing_entries = {
(entry["model_name"], entry.get("version", "v0")): i
for i, entry in enumerate(leaderboard_data.get("entries", []))
}
# Process each new entry
for new_entry in new_entries:
model_name = new_entry.get("model_name")
version = new_entry.get("version", "v0")
if (model_name, version) in existing_entries:
# Replace existing entry
leaderboard_data["entries"][existing_entries[(model_name, version)]] = new_entry
else:
# Add new entry
if "entries" not in leaderboard_data:
leaderboard_data["entries"] = []
leaderboard_data["entries"].append(new_entry)
# Update the last_updated timestamp
leaderboard_data["last_updated"] = datetime.now().isoformat()
return leaderboard_data
def process_jsonl_submission(file_path: str) -> Tuple[List[Dict], str]:
"""
Process a JSONL submission file and extract entries.
"""
entries = []
try:
with open(file_path, 'r') as f:
for line in f:
try:
entry = json.loads(line)
entries.append(entry)
except json.JSONDecodeError as e:
return [], f"Invalid JSON in submission file: {e}"
if not entries:
return [], "Submission file is empty"
return entries, "Successfully processed submission"
except Exception as e:
return [], f"Error processing submission file: {e}"
|