File size: 8,161 Bytes
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
 
 
 
 
d4d998a
 
3c01baa
 
 
 
 
 
 
 
d4d998a
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
 
 
 
 
 
 
 
d4d998a
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
3c01baa
 
d4d998a
3c01baa
 
 
 
 
 
d4d998a
 
 
3c01baa
d4d998a
 
 
3c01baa
d4d998a
3c01baa
d4d998a
 
 
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
 
 
3c01baa
b1cb07d
 
d4d998a
3c01baa
 
 
 
 
 
b1cb07d
 
 
 
 
 
d4d998a
b1cb07d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
3c01baa
d4d998a
 
b1cb07d
 
 
 
 
 
 
 
 
 
 
 
d4d998a
 
3c01baa
d4d998a
 
 
 
 
 
 
3c01baa
 
 
 
 
 
d4d998a
 
 
3c01baa
 
 
d4d998a
3c01baa
d4d998a
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""
Process and transform GuardBench leaderboard data.
"""

import json
import os
import pandas as pd
from datetime import datetime
from typing import Dict, List, Any, Tuple

from src.display.utils import CATEGORIES, TEST_TYPES, METRICS


def load_leaderboard_data(file_path: str) -> Dict:
    """
    Load the leaderboard data from a JSON file.
    """
    if not os.path.exists(file_path):
        version = "v0"
        if "_v" in file_path:
            version = file_path.split("_")[-1].split(".")[0]
        return {"entries": [], "last_updated": datetime.now().isoformat(), "version": version}

    with open(file_path, 'r') as f:
        data = json.load(f)

    # Ensure version field exists
    if "version" not in data:
        version = "v0"
        if "_v" in file_path:
            version = file_path.split("_")[-1].split(".")[0]
        data["version"] = version

    return data


def save_leaderboard_data(data: Dict, file_path: str) -> None:
    """
    Save the leaderboard data to a JSON file.
    """
    # Ensure the directory exists
    os.makedirs(os.path.dirname(file_path), exist_ok=True)

    # Update the last_updated timestamp
    data["last_updated"] = datetime.now().isoformat()

    # Ensure version is set
    if "version" not in data:
        version = "v0"
        if "_v" in file_path:
            version = file_path.split("_")[-1].split(".")[0]
        data["version"] = version

    with open(file_path, 'w') as f:
        json.dump(data, f, indent=2)


def process_submission(submission_data: List[Dict]) -> List[Dict]:
    """
    Process submission data and convert it to leaderboard entries.
    """
    entries = []

    for item in submission_data:
        # Create a new entry for the leaderboard
        entry = {
            "model_name": item.get("model_name", "Unknown Model"),
            "per_category_metrics": {},
            "avg_metrics": {},
            "submission_date": datetime.now().isoformat(),
            "version": item.get("version", "v0")
        }

        # Copy model metadata
        for key in ["model_type", "base_model", "revision", "precision", "weight_type"]:
            if key in item:
                entry[key] = item[key]

        # Process per-category metrics
        if "per_category_metrics" in item:
            entry["per_category_metrics"] = item["per_category_metrics"]

        # Process average metrics
        if "avg_metrics" in item:
            entry["avg_metrics"] = item["avg_metrics"]

        entries.append(entry)

    return entries


def leaderboard_to_dataframe(leaderboard_data: Dict) -> pd.DataFrame:
    """
    Convert leaderboard data to a pandas DataFrame for display.
    """
    rows = []

    for entry in leaderboard_data.get("entries", []):
        model_name = entry.get("model_name", "Unknown Model")

        # Extract average metrics for main display
        row = {
            "model_name": model_name,
            "model_type": entry.get("model_type", "Unknown"),
            "submission_date": entry.get("submission_date", ""),
            "version": entry.get("version", "v0"),
            "guard_model_type": entry.get("guard_model_type", "llm_regexp").lower()
        }

        # Add additional metadata fields if present
        for key in ["base_model", "revision", "precision", "weight_type"]:
            if key in entry:
                row[key] = entry[key]

        # CASE 1: Metrics are flat in the root
        for key, value in entry.items():
            if any(test_type in key for test_type in TEST_TYPES) or key in ["average_f1", "average_recall", "average_precision"]:
                row[key] = value

        # CASE 2: Metrics are in avg_metrics structure
        avg_metrics = entry.get("avg_metrics", {})
        if avg_metrics:
            for test_type in TEST_TYPES:
                if test_type in avg_metrics:
                    metrics = avg_metrics[test_type]
                    for metric in METRICS:
                        if metric in metrics:
                            col_name = f"{test_type}_{metric}"
                            row[col_name] = metrics[metric]

                            # Also add non-binary version for F1 scores
                            if metric == "f1_binary":
                                row[f"{test_type}_f1"] = metrics[metric]

            # Calculate averages if not present
            if "average_f1" not in row:
                f1_values = []
                for test_type in TEST_TYPES:
                    if test_type in avg_metrics and "f1_binary" in avg_metrics[test_type]:
                        f1_values.append(avg_metrics[test_type]["f1_binary"])
                if f1_values:
                    row["average_f1"] = sum(f1_values) / len(f1_values)

            if "average_recall" not in row:
                recall_values = []
                for test_type in TEST_TYPES:
                    if test_type in avg_metrics and "recall_binary" in avg_metrics[test_type]:
                        recall_values.append(avg_metrics[test_type]["recall_binary"])
                if recall_values:
                    row["average_recall"] = sum(recall_values) / len(recall_values)

            if "average_precision" not in row:
                precision_values = []
                for test_type in TEST_TYPES:
                    if test_type in avg_metrics and "precision_binary" in avg_metrics[test_type]:
                        precision_values.append(avg_metrics[test_type]["precision_binary"])
                if precision_values:
                    row["average_precision"] = sum(precision_values) / len(precision_values)

        rows.append(row)

    # Create DataFrame and sort by average F1 score
    df = pd.DataFrame(rows)

    # Ensure all expected columns exist
    for test_type in TEST_TYPES:
        if f"{test_type}_f1" not in df.columns:
            df[f"{test_type}_f1"] = None
        if f"{test_type}_f1_binary" not in df.columns:
            df[f"{test_type}_f1_binary"] = None
        if f"{test_type}_recall_binary" not in df.columns:
            df[f"{test_type}_recall_binary"] = None
        if f"{test_type}_precision_binary" not in df.columns:
            df[f"{test_type}_precision_binary"] = None

    if not df.empty and "average_f1" in df.columns:
        df = df.sort_values(by="average_f1", ascending=False)

    return df


def add_entries_to_leaderboard(leaderboard_data: Dict, new_entries: List[Dict]) -> Dict:
    """
    Add new entries to the leaderboard, replacing any with the same model name.
    """
    # Create a mapping of existing entries by model name and version
    existing_entries = {
        (entry["model_name"], entry.get("version", "v0")): i
        for i, entry in enumerate(leaderboard_data.get("entries", []))
    }

    # Process each new entry
    for new_entry in new_entries:
        model_name = new_entry.get("model_name")
        version = new_entry.get("version", "v0")

        if (model_name, version) in existing_entries:
            # Replace existing entry
            leaderboard_data["entries"][existing_entries[(model_name, version)]] = new_entry
        else:
            # Add new entry
            if "entries" not in leaderboard_data:
                leaderboard_data["entries"] = []
            leaderboard_data["entries"].append(new_entry)

    # Update the last_updated timestamp
    leaderboard_data["last_updated"] = datetime.now().isoformat()

    return leaderboard_data


def process_jsonl_submission(file_path: str) -> Tuple[List[Dict], str]:
    """
    Process a JSONL submission file and extract entries.
    """
    entries = []
    try:
        with open(file_path, 'r') as f:
            for line in f:
                try:
                    entry = json.loads(line)
                    entries.append(entry)
                except json.JSONDecodeError as e:
                    return [], f"Invalid JSON in submission file: {e}"

        if not entries:
            return [], "Submission file is empty"

        return entries, "Successfully processed submission"
    except Exception as e:
        return [], f"Error processing submission file: {e}"