File size: 13,517 Bytes
d4d998a
 
 
 
 
 
 
 
 
5565a34
d4d998a
 
 
5565a34
 
 
 
 
 
 
 
a3c3e83
 
5565a34
 
 
 
a3c3e83
5565a34
a3c3e83
5565a34
3f01f81
5565a34
 
3f01f81
5565a34
75d59af
 
 
5565a34
75d59af
5565a34
a3c3e83
 
 
 
f469537
 
a3c3e83
 
75d59af
a3c3e83
 
 
 
 
75d59af
5565a34
 
 
 
 
 
 
 
 
55fd99e
 
5565a34
55fd99e
a3c3e83
5565a34
55fd99e
 
5565a34
 
a3c3e83
5565a34
 
d4d998a
 
 
 
 
 
3c01baa
 
 
 
 
d4d998a
 
3c01baa
 
 
 
 
 
 
 
d4d998a
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
 
 
 
 
 
 
 
d4d998a
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
 
 
 
 
3c01baa
 
d4d998a
3c01baa
 
 
 
 
 
d4d998a
 
 
3c01baa
d4d998a
 
 
3c01baa
d4d998a
3c01baa
d4d998a
 
 
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
 
 
935d31d
3c01baa
b1cb07d
 
d4d998a
3c01baa
 
935d31d
3c01baa
 
 
b1cb07d
 
3f01f81
 
 
b1cb07d
 
 
d4d998a
b1cb07d
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c3e83
5565a34
a3c3e83
b1cb07d
a3c3e83
 
 
 
 
 
 
 
 
 
b1cb07d
a3c3e83
 
 
 
5565a34
b1cb07d
 
5565a34
b1cb07d
 
5565a34
b1cb07d
5565a34
 
 
b1cb07d
5565a34
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
3c01baa
d4d998a
 
b1cb07d
 
 
5565a34
 
 
 
a3c3e83
 
5565a34
a3c3e83
 
 
 
 
5565a34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f01f81
 
 
d4d998a
 
 
 
 
 
 
3c01baa
 
 
 
 
 
d4d998a
 
 
3c01baa
 
 
d4d998a
3c01baa
d4d998a
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c01baa
d4d998a
 
3c01baa
d4d998a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
"""
Process and transform GuardBench leaderboard data.
"""

import json
import os
import pandas as pd
from datetime import datetime
from typing import Dict, List, Any, Tuple
import numpy as np

from src.display.utils import CATEGORIES, TEST_TYPES, METRICS

# Constants for Integral Score calculation (mirrors guardbench library)
MAX_PUNISHABLE_RUNTIME_MS = 6000.0
MIN_PUNISHABLE_RUNTIME_MS = 200.0
MAX_RUNTIME_PENALTY = 0.75 # Corresponds to 1.0 - MIN_TIME_FACTOR, library used 0.75

def calculate_integral_score(row: pd.Series) -> float:
    """
    Calculate the integral score for a given model entry row.
    Uses accuracy as the primary metric, micro error ratio, and micro runtime penalty.
    Falls back to macro accuracy and averaged per-test-type errors/runtimes if micro values are missing.
    """
    integral_score = 1.0
    metric_count = 0

    # Primary metric (using accuracy)
    for test_type in TEST_TYPES:
        metric_col = f"{test_type}_accuracy"
        if metric_col in row and pd.notna(row[metric_col]):
            # print(f"Found accuracy metric for {test_type}: {row[metric_col]}")
            integral_score *= row[metric_col]
            metric_count += 1
    # print(f"Metric count: {metric_count}")

    # If no accuracy metrics were found at all, the score remains 1.0 before penalties.
    # The library returns 0.0 in this case (`return integral_score if count > 0 else 0.0`)
    # Let's add that check back before applying penalties.
    if metric_count == 0:
        return 0.0

    # Error Penalty
    micro_error_col = "micro_avg_error_ratio"
    if micro_error_col in row and pd.notna(row[micro_error_col]):
        # Micro error is stored as %, convert back to ratio
        micro_error_ratio = row[micro_error_col] / 100.0
        integral_score *= (1.0 - micro_error_ratio)

    # Runtime Penalty
    avg_runtime_ms = None # Initialize
    micro_runtime_col = "micro_avg_runtime_ms"
    if micro_runtime_col in row and pd.notna(row[micro_runtime_col]):
        avg_runtime_ms = row[micro_runtime_col]

    if avg_runtime_ms is not None:
        # Apply penalty based on runtime (only if micro avg runtime was found)
        runtime = max(
            min(avg_runtime_ms, MAX_PUNISHABLE_RUNTIME_MS),
            MIN_PUNISHABLE_RUNTIME_MS,
        )

        if MAX_PUNISHABLE_RUNTIME_MS > MIN_PUNISHABLE_RUNTIME_MS:
            normalized_time = (runtime - MIN_PUNISHABLE_RUNTIME_MS) / (
                MAX_PUNISHABLE_RUNTIME_MS - MIN_PUNISHABLE_RUNTIME_MS
            )
            # Match reference library formula 1
            time_factor = 1.0 - (1.0 - MAX_RUNTIME_PENALTY) * normalized_time
        else:
            # Match reference library formula (though less critical when max==min)
            time_factor = 1.0 if runtime <= MIN_PUNISHABLE_RUNTIME_MS else (1.0 - MAX_RUNTIME_PENALTY)

        # Match reference library formula 2 (enforce minimum factor)
        time_factor = max(MAX_RUNTIME_PENALTY, time_factor)
        integral_score *= time_factor

    # Rooting is not done in the reference library's summary table calculation
    return integral_score


def load_leaderboard_data(file_path: str) -> Dict:
    """
    Load the leaderboard data from a JSON file.
    """
    if not os.path.exists(file_path):
        version = "v0"
        if "_v" in file_path:
            version = file_path.split("_")[-1].split(".")[0]
        return {"entries": [], "last_updated": datetime.now().isoformat(), "version": version}

    with open(file_path, 'r') as f:
        data = json.load(f)

    # Ensure version field exists
    if "version" not in data:
        version = "v0"
        if "_v" in file_path:
            version = file_path.split("_")[-1].split(".")[0]
        data["version"] = version

    return data


def save_leaderboard_data(data: Dict, file_path: str) -> None:
    """
    Save the leaderboard data to a JSON file.
    """
    # Ensure the directory exists
    os.makedirs(os.path.dirname(file_path), exist_ok=True)

    # Update the last_updated timestamp
    data["last_updated"] = datetime.now().isoformat()

    # Ensure version is set
    if "version" not in data:
        version = "v0"
        if "_v" in file_path:
            version = file_path.split("_")[-1].split(".")[0]
        data["version"] = version

    with open(file_path, 'w') as f:
        json.dump(data, f, indent=2)


def process_submission(submission_data: List[Dict]) -> List[Dict]:
    """
    Process submission data and convert it to leaderboard entries.
    """
    entries = []

    for item in submission_data:
        # Create a new entry for the leaderboard
        entry = {
            "model_name": item.get("model_name", "Unknown Model"),
            "per_category_metrics": {},
            "avg_metrics": {},
            "submission_date": datetime.now().isoformat(),
            "version": item.get("version", "v0")
        }

        # Copy model metadata
        for key in ["model_type", "base_model", "revision", "precision", "weight_type"]:
            if key in item:
                entry[key] = item[key]

        # Process per-category metrics
        if "per_category_metrics" in item:
            entry["per_category_metrics"] = item["per_category_metrics"]

        # Process average metrics
        if "avg_metrics" in item:
            entry["avg_metrics"] = item["avg_metrics"]

        entries.append(entry)

    return entries


def leaderboard_to_dataframe(leaderboard_data: Dict) -> pd.DataFrame:
    """
    Convert leaderboard data to a pandas DataFrame for display.
    """
    rows = []

    for entry in leaderboard_data.get("entries", []):
        model_name = entry.get("model_name", "Unknown Model")

        # Extract average metrics for main display
        row = {
            "model_name": model_name,
            "model_type": entry.get("model_type", "Unknown"),
            "mode": entry.get("mode", "Strict"),
            "submission_date": entry.get("submission_date", ""),
            "version": entry.get("version", "v0"),
            "guard_model_type": entry.get("guard_model_type", "llm_regexp").lower()
        }

        # Add additional metadata fields if present
        for key in ["base_model", "revision", "precision", "weight_type"]:
            if key in entry:
                row[key] = entry[key]

        # CASE 1: Metrics are flat in the root
        for key, value in entry.items():
            if any(test_type in key for test_type in TEST_TYPES) or \
               key in ["average_f1", "average_recall", "average_precision",
                       "macro_accuracy", "macro_recall", "total_evals_count"]:
                row[key] = value

        # CASE 2: Metrics are in avg_metrics structure
        avg_metrics = entry.get("avg_metrics", {})
        if avg_metrics:
            for test_type in TEST_TYPES:
                if test_type in avg_metrics:
                    metrics = avg_metrics[test_type]
                    for metric in METRICS:
                        if metric in metrics:
                            col_name = f"{test_type}_{metric}"
                            row[col_name] = metrics[metric]

                            # Also add non-binary version for F1 scores
                            if metric == "f1_binary":
                                row[f"{test_type}_f1"] = metrics[metric]

            # Calculate averages if not present
            # Use accuracy for macro_accuracy
            if "macro_accuracy" not in row:
                accuracy_values = []
                for test_type in TEST_TYPES:
                    # Check avg_metrics structure first
                    accuracy_val = None
                    if test_type in avg_metrics and "accuracy" in avg_metrics[test_type] and pd.notna(avg_metrics[test_type]["accuracy"]):
                        accuracy_val = avg_metrics[test_type]["accuracy"]
                    # Check flat structure as fallback (might be redundant but safer)
                    elif f"{test_type}_accuracy" in row and pd.notna(row[f"{test_type}_accuracy"]):
                        accuracy_val = row[f"{test_type}_accuracy"]

                    if accuracy_val is not None:
                        accuracy_values.append(accuracy_val)

                if accuracy_values:
                    row["macro_accuracy"] = sum(accuracy_values) / len(accuracy_values)

            # Use recall_binary for macro_recall
            if "macro_recall" not in row:
                recall_values = []
                for test_type in TEST_TYPES:
                    if test_type in avg_metrics and "recall_binary" in avg_metrics[test_type] and pd.notna(avg_metrics[test_type]["recall_binary"]):
                        recall_values.append(avg_metrics[test_type]["recall_binary"])
                if recall_values:
                    row["macro_recall"] = sum(recall_values) / len(recall_values)

            if "total_evals_count" not in row:
                total_samples = 0
                found_samples = False
                for test_type in TEST_TYPES:
                    if test_type in avg_metrics and "sample_count" in avg_metrics[test_type] and pd.notna(avg_metrics[test_type]["sample_count"]):
                        total_samples += avg_metrics[test_type]["sample_count"]
                        found_samples = True
                if found_samples:
                    row["total_evals_count"] = total_samples

        # Extract micro averages directly from entry if they exist (like in guardbench library)
        row["micro_avg_error_ratio"] = entry.get("micro_avg_error_ratio", pd.NA)
        row["micro_avg_runtime_ms"] = entry.get("micro_avg_runtime_ms", pd.NA)

        # Convert error ratio to percentage for consistency with display name
        if pd.notna(row["micro_avg_error_ratio"]):
            row["micro_avg_error_ratio"] *= 100

        rows.append(row)

    # Create DataFrame and sort by average F1 score
    df = pd.DataFrame(rows)

    # Ensure all expected columns exist
    for test_type in TEST_TYPES:
        for metric in METRICS:
            col_name = f"{test_type}_{metric}"
            if col_name not in df.columns:
                df[col_name] = pd.NA # Use pd.NA for missing numeric data

            # Add non-binary F1 if binary exists and f1 is missing
            if metric == "f1_binary" and f"{test_type}_f1" not in df.columns:
                # Check if the binary column has data before copying
                if col_name in df.columns:
                    df[f"{test_type}_f1"] = df[col_name]
                else:
                    df[f"{test_type}_f1"] = pd.NA

    # Calculate Integral Score
    if not df.empty:
        df["integral_score"] = df.apply(calculate_integral_score, axis=1)
        # Sort by Integral Score instead of average_f1
        df = df.sort_values(by="integral_score", ascending=False, na_position='last')
    else:
        # Add the column even if empty
        df["integral_score"] = pd.NA

    # Ensure summary columns exist
    summary_cols = ["macro_accuracy", "macro_recall", "micro_avg_error_ratio", "micro_avg_runtime_ms", "total_evals_count"]
    for col in summary_cols:
        if col not in df.columns:
            df[col] = pd.NA

    # Remove old average columns if they somehow snuck in
    old_avg_cols = ["average_f1", "average_recall", "average_precision"]
    for col in old_avg_cols:
        if col in df.columns:
            df = df.drop(columns=[col])
    # print("--- DataFrame before returning from leaderboard_to_dataframe ---")
    # print(df[['model_name', 'macro_accuracy', 'macro_recall', 'total_evals_count']].head())
    # print("-------------------------------------------------------------")
    return df


def add_entries_to_leaderboard(leaderboard_data: Dict, new_entries: List[Dict]) -> Dict:
    """
    Add new entries to the leaderboard, replacing any with the same model name.
    """
    # Create a mapping of existing entries by model name and version
    existing_entries = {
        (entry["model_name"], entry.get("version", "v0")): i
        for i, entry in enumerate(leaderboard_data.get("entries", []))
    }

    # Process each new entry
    for new_entry in new_entries:
        model_name = new_entry.get("model_name")
        version = new_entry.get("version", "v0")

        if (model_name, version) in existing_entries:
            # Replace existing entry
            leaderboard_data["entries"][existing_entries[(model_name, version)]] = new_entry
        else:
            # Add new entry
            if "entries" not in leaderboard_data:
                leaderboard_data["entries"] = []
            leaderboard_data["entries"].append(new_entry)

    # Update the last_updated timestamp
    leaderboard_data["last_updated"] = datetime.now().isoformat()

    return leaderboard_data


def process_jsonl_submission(file_path: str) -> Tuple[List[Dict], str]:
    """
    Process a JSONL submission file and extract entries.
    """
    entries = []
    try:
        with open(file_path, 'r') as f:
            for line in f:
                try:
                    entry = json.loads(line)
                    entries.append(entry)
                except json.JSONDecodeError as e:
                    return [], f"Invalid JSON in submission file: {e}"

        if not entries:
            return [], "Submission file is empty"

        return entries, "Successfully processed submission"
    except Exception as e:
        return [], f"Error processing submission file: {e}"