looks good !
Browse files- app.py +338 -33
- src/display/utils.py +29 -0
app.py
CHANGED
@@ -33,7 +33,9 @@ from src.display.utils import (
|
|
33 |
ModelType,
|
34 |
Precision,
|
35 |
WeightType,
|
36 |
-
GuardModelType
|
|
|
|
|
37 |
)
|
38 |
from src.display.formatting import styled_message, styled_error, styled_warning
|
39 |
from src.envs import (
|
@@ -69,9 +71,55 @@ except Exception as e:
|
|
69 |
|
70 |
print(DISPLAY_COLS)
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
"""
|
74 |
-
Initialize the leaderboard
|
75 |
"""
|
76 |
if dataframe is None or dataframe.empty:
|
77 |
# Create an empty dataframe with the right columns
|
@@ -79,26 +127,174 @@ def init_leaderboard(dataframe):
|
|
79 |
dataframe = pd.DataFrame(columns=columns)
|
80 |
logger.warning("Initializing empty leaderboard")
|
81 |
|
82 |
-
print("\n\n", "dataframe", dataframe, "--------------------------------\n\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
interactive=False,
|
98 |
-
|
|
|
|
|
99 |
)
|
100 |
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
def submit_results(
|
103 |
model_name: str,
|
104 |
base_model: str,
|
@@ -162,25 +358,25 @@ def refresh_data(version=CURRENT_VERSION):
|
|
162 |
main_df = get_leaderboard_df(version=version)
|
163 |
category_dfs = [get_category_leaderboard_df(category, version=version) for category in CATEGORIES]
|
164 |
|
165 |
-
# For
|
166 |
-
|
167 |
-
return dict(
|
168 |
-
value=main_df
|
169 |
-
), *[dict(value=df) for df in category_dfs]
|
170 |
|
171 |
except Exception as e:
|
172 |
logger.error(f"Error in scheduled refresh: {e}")
|
173 |
-
return
|
174 |
-
for tab in category_tabs.children[1:]]
|
175 |
|
176 |
|
177 |
def update_leaderboards(version):
|
178 |
"""
|
179 |
Update all leaderboard components with data for the selected version.
|
180 |
"""
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
184 |
|
185 |
|
186 |
def create_performance_plot(selected_models, category, metric="f1_binary", version=CURRENT_VERSION):
|
@@ -309,25 +505,132 @@ with demo:
|
|
309 |
scale=1
|
310 |
)
|
311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
# Create tabs for each category
|
313 |
with gr.Tabs(elem_classes="category-tabs") as category_tabs:
|
314 |
# First tab for average metrics across all categories
|
315 |
with gr.TabItem("📊 Overall Performance", elem_id="overall-tab"):
|
316 |
-
print("LEADERBOARD_DF", LEADERBOARD_DF)
|
317 |
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
318 |
|
319 |
# Create a tab for each category
|
320 |
for category in CATEGORIES:
|
321 |
with gr.TabItem(f"{category}", elem_id=f"category-{category.lower().replace(' ', '-')}-tab"):
|
322 |
-
print("category DF", category)
|
323 |
category_df = get_category_leaderboard_df(category, version=CURRENT_VERSION)
|
324 |
-
print("category DF", category_df)
|
325 |
category_leaderboard = init_leaderboard(category_df)
|
326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
# Refresh button functionality
|
328 |
refresh_button.click(
|
329 |
-
fn=
|
330 |
-
inputs=[],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)]
|
332 |
)
|
333 |
|
@@ -494,3 +797,5 @@ scheduler.start()
|
|
494 |
if __name__ == "__main__":
|
495 |
|
496 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
|
|
33 |
ModelType,
|
34 |
Precision,
|
35 |
WeightType,
|
36 |
+
GuardModelType,
|
37 |
+
get_all_column_choices,
|
38 |
+
get_default_visible_columns,
|
39 |
)
|
40 |
from src.display.formatting import styled_message, styled_error, styled_warning
|
41 |
from src.envs import (
|
|
|
71 |
|
72 |
print(DISPLAY_COLS)
|
73 |
|
74 |
+
# Define the update_column_choices function before initializing the leaderboard components
|
75 |
+
def update_column_choices(df):
|
76 |
+
"""Update column choices based on what's actually in the dataframe"""
|
77 |
+
if df is None or df.empty:
|
78 |
+
return get_all_column_choices()
|
79 |
+
|
80 |
+
# Get columns that actually exist in the dataframe
|
81 |
+
existing_columns = list(df.columns)
|
82 |
+
|
83 |
+
# Get all possible columns with their display names
|
84 |
+
all_columns = get_all_column_choices()
|
85 |
+
|
86 |
+
# Filter to only include columns that exist in the dataframe
|
87 |
+
valid_columns = [(col_name, display_name) for col_name, display_name in all_columns
|
88 |
+
if col_name in existing_columns]
|
89 |
+
|
90 |
+
# Return default if there are no valid columns
|
91 |
+
if not valid_columns:
|
92 |
+
return get_all_column_choices()
|
93 |
+
|
94 |
+
return valid_columns
|
95 |
+
|
96 |
+
# Update the column_selector initialization
|
97 |
+
def get_initial_columns():
|
98 |
+
"""Get initial columns to show in the dropdown"""
|
99 |
+
try:
|
100 |
+
# Get available columns in the main dataframe
|
101 |
+
available_cols = list(LEADERBOARD_DF.columns)
|
102 |
+
logger.info(f"Available columns in LEADERBOARD_DF: {available_cols}")
|
103 |
+
|
104 |
+
# If dataframe is empty, use default visible columns
|
105 |
+
if not available_cols:
|
106 |
+
return get_default_visible_columns()
|
107 |
+
|
108 |
+
# Get default visible columns that actually exist in the dataframe
|
109 |
+
valid_defaults = [col for col in get_default_visible_columns() if col in available_cols]
|
110 |
+
|
111 |
+
# If none of the defaults exist, return all available columns
|
112 |
+
if not valid_defaults:
|
113 |
+
return available_cols
|
114 |
+
|
115 |
+
return valid_defaults
|
116 |
+
except Exception as e:
|
117 |
+
logger.error(f"Error getting initial columns: {e}")
|
118 |
+
return get_default_visible_columns()
|
119 |
+
|
120 |
+
def init_leaderboard(dataframe, visible_columns=None):
|
121 |
"""
|
122 |
+
Initialize a standard Gradio Dataframe component for the leaderboard.
|
123 |
"""
|
124 |
if dataframe is None or dataframe.empty:
|
125 |
# Create an empty dataframe with the right columns
|
|
|
127 |
dataframe = pd.DataFrame(columns=columns)
|
128 |
logger.warning("Initializing empty leaderboard")
|
129 |
|
130 |
+
# print("\n\n", "dataframe", dataframe, "--------------------------------\n\n")
|
131 |
+
|
132 |
+
# Determine which columns to display
|
133 |
+
display_column_names = [getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS]
|
134 |
+
hidden_column_names = [getattr(GUARDBENCH_COLUMN, col).name for col in HIDDEN_COLS]
|
135 |
+
|
136 |
+
# Columns that should always be shown
|
137 |
+
always_visible = [getattr(GUARDBENCH_COLUMN, col).name for col in NEVER_HIDDEN_COLS]
|
138 |
+
|
139 |
+
# Use provided visible columns if specified, otherwise use default
|
140 |
+
if visible_columns is None:
|
141 |
+
# Determine which columns to show initially
|
142 |
+
visible_columns = [col for col in display_column_names if col not in hidden_column_names]
|
143 |
+
|
144 |
+
# Always include the never-hidden columns
|
145 |
+
for col in always_visible:
|
146 |
+
if col not in visible_columns and col in dataframe.columns:
|
147 |
+
visible_columns.append(col)
|
148 |
+
|
149 |
+
# Make sure we only include columns that actually exist in the dataframe
|
150 |
+
visible_columns = [col for col in visible_columns if col in dataframe.columns]
|
151 |
+
|
152 |
+
# Map GuardBench column types to Gradio's expected datatype strings
|
153 |
+
# Valid Gradio datatypes are: 'str', 'number', 'bool', 'date', 'markdown', 'html', 'image'
|
154 |
+
type_mapping = {
|
155 |
+
'text': 'str',
|
156 |
+
'number': 'number',
|
157 |
+
'bool': 'bool',
|
158 |
+
'date': 'date',
|
159 |
+
'markdown': 'markdown',
|
160 |
+
'html': 'html',
|
161 |
+
'image': 'image'
|
162 |
+
}
|
163 |
|
164 |
+
# Create a list of datatypes in the format Gradio expects
|
165 |
+
datatypes = []
|
166 |
+
for col in visible_columns:
|
167 |
+
# Find the corresponding GUARDBENCH_COLUMN entry
|
168 |
+
col_type = None
|
169 |
+
for display_col in DISPLAY_COLS:
|
170 |
+
if getattr(GUARDBENCH_COLUMN, display_col).name == col:
|
171 |
+
orig_type = getattr(GUARDBENCH_COLUMN, display_col).type
|
172 |
+
# Map to Gradio's expected types
|
173 |
+
col_type = type_mapping.get(orig_type, 'str')
|
174 |
+
break
|
175 |
+
|
176 |
+
# Default to 'str' if type not found or not mappable
|
177 |
+
if col_type is None:
|
178 |
+
col_type = 'str'
|
179 |
+
|
180 |
+
datatypes.append(col_type)
|
181 |
+
|
182 |
+
# Create a dummy column for search functionality if it doesn't exist
|
183 |
+
if 'search_dummy' not in dataframe.columns:
|
184 |
+
dataframe['search_dummy'] = dataframe.apply(
|
185 |
+
lambda row: ' '.join(str(val) for val in row.values if pd.notna(val)),
|
186 |
+
axis=1
|
187 |
+
)
|
188 |
+
|
189 |
+
# Select only the visible columns for display
|
190 |
+
visible_columns.remove('model_name')
|
191 |
+
visible_columns = ['model_name'] + visible_columns
|
192 |
+
display_df = dataframe[visible_columns].copy()
|
193 |
+
|
194 |
+
return gr.Dataframe(
|
195 |
+
value=display_df,
|
196 |
+
headers=visible_columns,
|
197 |
+
datatype=datatypes, # Now using the correct format
|
198 |
interactive=False,
|
199 |
+
wrap=True,
|
200 |
+
elem_id="leaderboard-table",
|
201 |
+
row_count=len(display_df)
|
202 |
)
|
203 |
|
204 |
|
205 |
+
def search_filter_leaderboard(df, search_query="", model_types=None, version=CURRENT_VERSION):
|
206 |
+
"""
|
207 |
+
Filter the leaderboard based on search query and model types.
|
208 |
+
"""
|
209 |
+
if df is None or df.empty:
|
210 |
+
return df
|
211 |
+
|
212 |
+
filtered_df = df.copy()
|
213 |
+
|
214 |
+
# Add search dummy column if it doesn't exist
|
215 |
+
if 'search_dummy' not in filtered_df.columns:
|
216 |
+
filtered_df['search_dummy'] = filtered_df.apply(
|
217 |
+
lambda row: ' '.join(str(val) for val in row.values if pd.notna(val)),
|
218 |
+
axis=1
|
219 |
+
)
|
220 |
+
|
221 |
+
# Apply model type filter
|
222 |
+
if model_types and len(model_types) > 0:
|
223 |
+
filtered_df = filtered_df[filtered_df[GUARDBENCH_COLUMN.model_type.name].isin(model_types)]
|
224 |
+
|
225 |
+
# Apply search query
|
226 |
+
if search_query:
|
227 |
+
search_terms = [term.strip() for term in search_query.split(";") if term.strip()]
|
228 |
+
if search_terms:
|
229 |
+
combined_mask = None
|
230 |
+
for term in search_terms:
|
231 |
+
mask = filtered_df['search_dummy'].str.contains(term, case=False, na=False)
|
232 |
+
if combined_mask is None:
|
233 |
+
combined_mask = mask
|
234 |
+
else:
|
235 |
+
combined_mask = combined_mask | mask
|
236 |
+
|
237 |
+
if combined_mask is not None:
|
238 |
+
filtered_df = filtered_df[combined_mask]
|
239 |
+
|
240 |
+
# Drop the search dummy column before returning
|
241 |
+
visible_columns = [col for col in filtered_df.columns if col != 'search_dummy']
|
242 |
+
return filtered_df[visible_columns]
|
243 |
+
|
244 |
+
|
245 |
+
def refresh_data_with_filters(version=CURRENT_VERSION, search_query="", model_types=None, selected_columns=None):
|
246 |
+
"""
|
247 |
+
Refresh the leaderboard data and update all components with filtering.
|
248 |
+
Ensures we handle cases where dataframes might have limited columns.
|
249 |
+
"""
|
250 |
+
try:
|
251 |
+
logger.info(f"Performing refresh of leaderboard data with filters...")
|
252 |
+
# Get new data
|
253 |
+
main_df = get_leaderboard_df(version=version)
|
254 |
+
category_dfs = [get_category_leaderboard_df(category, version=version) for category in CATEGORIES]
|
255 |
+
selected_columns = [x.lower().replace(" ", "_").replace("(", "").replace(")", "").replace("_recall", "_recall_binary") for x in selected_columns]
|
256 |
+
|
257 |
+
# Log the actual columns we have
|
258 |
+
logger.info(f"Main dataframe columns: {list(main_df.columns)}")
|
259 |
+
|
260 |
+
# Apply filters to each dataframe
|
261 |
+
filtered_main_df = search_filter_leaderboard(main_df, search_query, model_types, version)
|
262 |
+
filtered_category_dfs = [
|
263 |
+
search_filter_leaderboard(df, search_query, model_types, version)
|
264 |
+
for df in category_dfs
|
265 |
+
]
|
266 |
+
|
267 |
+
# Get available columns from the dataframe
|
268 |
+
available_columns = list(filtered_main_df.columns)
|
269 |
+
|
270 |
+
# Filter selected columns to only those available in the data
|
271 |
+
if selected_columns:
|
272 |
+
valid_selected_columns = [col for col in selected_columns if col in available_columns]
|
273 |
+
if not valid_selected_columns and 'model_name' in available_columns:
|
274 |
+
valid_selected_columns = ['model_name'] + get_default_visible_columns()
|
275 |
+
else:
|
276 |
+
valid_selected_columns = available_columns
|
277 |
+
|
278 |
+
# Initialize dataframes for display with valid selected columns
|
279 |
+
main_dataframe = init_leaderboard(filtered_main_df, valid_selected_columns)
|
280 |
+
|
281 |
+
# For category dataframes, get columns that actually exist in each one
|
282 |
+
category_dataframes = []
|
283 |
+
for df in filtered_category_dfs:
|
284 |
+
df_columns = list(df.columns)
|
285 |
+
df_valid_columns = [col for col in valid_selected_columns if col in df_columns]
|
286 |
+
if not df_valid_columns and 'model_name' in df_columns:
|
287 |
+
df_valid_columns = ['model_name'] + get_default_visible_columns()
|
288 |
+
category_dataframes.append(init_leaderboard(df, df_valid_columns))
|
289 |
+
|
290 |
+
return main_dataframe, *category_dataframes
|
291 |
+
|
292 |
+
except Exception as e:
|
293 |
+
logger.error(f"Error in refresh with filters: {e}")
|
294 |
+
# Return the current leaderboards on error
|
295 |
+
return leaderboard, *[tab.children[0] for tab in category_tabs.children[1:len(CATEGORIES)+1]]
|
296 |
+
|
297 |
+
|
298 |
def submit_results(
|
299 |
model_name: str,
|
300 |
base_model: str,
|
|
|
358 |
main_df = get_leaderboard_df(version=version)
|
359 |
category_dfs = [get_category_leaderboard_df(category, version=version) for category in CATEGORIES]
|
360 |
|
361 |
+
# For gr.Dataframe, we return the actual dataframes
|
362 |
+
return main_df, *category_dfs
|
|
|
|
|
|
|
363 |
|
364 |
except Exception as e:
|
365 |
logger.error(f"Error in scheduled refresh: {e}")
|
366 |
+
return None, *[None for _ in CATEGORIES]
|
|
|
367 |
|
368 |
|
369 |
def update_leaderboards(version):
|
370 |
"""
|
371 |
Update all leaderboard components with data for the selected version.
|
372 |
"""
|
373 |
+
try:
|
374 |
+
new_df = get_leaderboard_df(version=version)
|
375 |
+
category_dfs = [get_category_leaderboard_df(category, version=version) for category in CATEGORIES]
|
376 |
+
return new_df, *category_dfs
|
377 |
+
except Exception as e:
|
378 |
+
logger.error(f"Error updating leaderboards for version {version}: {e}")
|
379 |
+
return None, *[None for _ in CATEGORIES]
|
380 |
|
381 |
|
382 |
def create_performance_plot(selected_models, category, metric="f1_binary", version=CURRENT_VERSION):
|
|
|
505 |
scale=1
|
506 |
)
|
507 |
|
508 |
+
with gr.Row():
|
509 |
+
search_input = gr.Textbox(
|
510 |
+
placeholder="Search models (separate queries with ;)...",
|
511 |
+
label="Search",
|
512 |
+
elem_id="search-bar"
|
513 |
+
)
|
514 |
+
model_type_filter = gr.Dropdown(
|
515 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
516 |
+
label="Filter by Model Type",
|
517 |
+
multiselect=True,
|
518 |
+
value=[],
|
519 |
+
interactive=True
|
520 |
+
)
|
521 |
+
column_selector = gr.Dropdown(
|
522 |
+
choices=get_all_column_choices(),
|
523 |
+
label="Customize Columns",
|
524 |
+
multiselect=True,
|
525 |
+
value=get_initial_columns(),
|
526 |
+
interactive=True
|
527 |
+
)
|
528 |
+
|
529 |
# Create tabs for each category
|
530 |
with gr.Tabs(elem_classes="category-tabs") as category_tabs:
|
531 |
# First tab for average metrics across all categories
|
532 |
with gr.TabItem("📊 Overall Performance", elem_id="overall-tab"):
|
|
|
533 |
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
534 |
|
535 |
# Create a tab for each category
|
536 |
for category in CATEGORIES:
|
537 |
with gr.TabItem(f"{category}", elem_id=f"category-{category.lower().replace(' ', '-')}-tab"):
|
|
|
538 |
category_df = get_category_leaderboard_df(category, version=CURRENT_VERSION)
|
|
|
539 |
category_leaderboard = init_leaderboard(category_df)
|
540 |
|
541 |
+
# Connect search and filter inputs to update function
|
542 |
+
def update_with_search_filters(version=CURRENT_VERSION, search_query="", model_types=None, selected_columns=None):
|
543 |
+
"""
|
544 |
+
Update the leaderboards with search and filter settings.
|
545 |
+
"""
|
546 |
+
return refresh_data_with_filters(version, search_query, model_types, selected_columns)
|
547 |
+
|
548 |
# Refresh button functionality
|
549 |
refresh_button.click(
|
550 |
+
fn=refresh_data_with_filters,
|
551 |
+
inputs=[version_selector, search_input, model_type_filter, column_selector],
|
552 |
+
outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)]
|
553 |
+
)
|
554 |
+
|
555 |
+
# Search input functionality
|
556 |
+
search_input.change(
|
557 |
+
fn=refresh_data_with_filters,
|
558 |
+
inputs=[version_selector, search_input, model_type_filter, column_selector],
|
559 |
+
outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)]
|
560 |
+
)
|
561 |
+
|
562 |
+
# Model type filter functionality
|
563 |
+
model_type_filter.change(
|
564 |
+
fn=refresh_data_with_filters,
|
565 |
+
inputs=[version_selector, search_input, model_type_filter, column_selector],
|
566 |
+
outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)]
|
567 |
+
)
|
568 |
+
|
569 |
+
# Version selector functionality
|
570 |
+
version_selector.change(
|
571 |
+
fn=refresh_data_with_filters,
|
572 |
+
inputs=[version_selector, search_input, model_type_filter, column_selector],
|
573 |
+
outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)]
|
574 |
+
)
|
575 |
+
|
576 |
+
# Update the update_columns function to handle updating all tabs at once
|
577 |
+
def update_columns(selected_columns):
|
578 |
+
"""
|
579 |
+
Update all leaderboards to show the selected columns.
|
580 |
+
Ensures all selected columns are preserved in the update.
|
581 |
+
|
582 |
+
"""
|
583 |
+
|
584 |
+
try:
|
585 |
+
logger.info(f"Updating columns to show: {selected_columns}")
|
586 |
+
|
587 |
+
# If no columns are selected, use default visible columns
|
588 |
+
if not selected_columns or len(selected_columns) == 0:
|
589 |
+
selected_columns = get_default_visible_columns()
|
590 |
+
logger.info(f"No columns selected, using defaults: {selected_columns}")
|
591 |
+
|
592 |
+
selected_columns = [x.lower().replace(" ", "_").replace("(", "").replace(")", "").replace("_recall", "_recall_binary") for x in selected_columns]
|
593 |
+
|
594 |
+
|
595 |
+
# Get the current data with ALL columns preserved
|
596 |
+
main_df = get_leaderboard_df(version=version_selector.value)
|
597 |
+
|
598 |
+
# Get category dataframes with ALL columns preserved
|
599 |
+
category_dfs = [get_category_leaderboard_df(category, version=version_selector.value)
|
600 |
+
for category in CATEGORIES]
|
601 |
+
|
602 |
+
# Log columns for debugging
|
603 |
+
logger.info(f"Main dataframe columns: {list(main_df.columns)}")
|
604 |
+
logger.info(f"Selected columns: {selected_columns}")
|
605 |
+
|
606 |
+
# IMPORTANT: Make sure model_name is always included
|
607 |
+
if 'model_name' in main_df.columns and 'model_name' not in selected_columns:
|
608 |
+
selected_columns = ['model_name'] + selected_columns
|
609 |
+
|
610 |
+
# Initialize the main leaderboard with the selected columns
|
611 |
+
# We're passing the raw selected_columns directly to preserve the selection
|
612 |
+
main_leaderboard = init_leaderboard(main_df, selected_columns)
|
613 |
+
|
614 |
+
# Initialize category dataframes with the same selected columns
|
615 |
+
# This ensures consistency across all tabs
|
616 |
+
category_leaderboards = []
|
617 |
+
for df in category_dfs:
|
618 |
+
# Use the same selected columns for each category
|
619 |
+
# init_leaderboard will automatically handle filtering to columns that exist
|
620 |
+
category_leaderboards.append(init_leaderboard(df, selected_columns))
|
621 |
+
|
622 |
+
return main_leaderboard, *category_leaderboards
|
623 |
+
|
624 |
+
except Exception as e:
|
625 |
+
logger.error(f"Error updating columns: {e}")
|
626 |
+
import traceback
|
627 |
+
logger.error(traceback.format_exc())
|
628 |
+
return leaderboard, *[tab.children[0] for tab in category_tabs.children[1:len(CATEGORIES)+1]]
|
629 |
+
|
630 |
+
# Connect column selector to update function
|
631 |
+
column_selector.change(
|
632 |
+
fn=update_columns,
|
633 |
+
inputs=[column_selector],
|
634 |
outputs=[leaderboard] + [category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)]
|
635 |
)
|
636 |
|
|
|
797 |
if __name__ == "__main__":
|
798 |
|
799 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
800 |
+
|
801 |
+
|
src/display/utils.py
CHANGED
@@ -324,3 +324,32 @@ METRICS = [
|
|
324 |
"error_ratio",
|
325 |
"avg_runtime_ms"
|
326 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
"error_ratio",
|
325 |
"avg_runtime_ms"
|
326 |
]
|
327 |
+
|
328 |
+
def get_all_column_choices():
|
329 |
+
"""
|
330 |
+
Get all available column choices for the multiselect dropdown.
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
List of tuples with (column_name, display_name) for all columns.
|
334 |
+
"""
|
335 |
+
column_choices = []
|
336 |
+
|
337 |
+
default_visible_columns = get_default_visible_columns()
|
338 |
+
|
339 |
+
for f in fields(GUARDBENCH_COLUMN):
|
340 |
+
column_info = getattr(GUARDBENCH_COLUMN, f.name)
|
341 |
+
# Create a tuple with both the internal name and display name
|
342 |
+
if column_info.name not in default_visible_columns:
|
343 |
+
column_choices.append((column_info.name, column_info.display_name))
|
344 |
+
|
345 |
+
return column_choices
|
346 |
+
|
347 |
+
def get_default_visible_columns():
|
348 |
+
"""
|
349 |
+
Get the list of column names that should be visible by default.
|
350 |
+
|
351 |
+
Returns:
|
352 |
+
List of column names that are displayed by default.
|
353 |
+
"""
|
354 |
+
return [getattr(GUARDBENCH_COLUMN, f.name).name for f in fields(GUARDBENCH_COLUMN)
|
355 |
+
if getattr(GUARDBENCH_COLUMN, f.name).displayed_by_default]
|