refactor
Browse files
app.py
CHANGED
@@ -47,13 +47,15 @@ from src.envs import (
|
|
47 |
RESULTS_DATASET_ID,
|
48 |
SUBMITTER_TOKEN,
|
49 |
TOKEN,
|
50 |
-
DATA_PATH
|
51 |
)
|
52 |
from src.populate import get_leaderboard_df, get_category_leaderboard_df
|
53 |
from src.submission.submit import process_submission
|
54 |
|
55 |
# Configure logging
|
56 |
-
logging.basicConfig(
|
|
|
|
|
57 |
logger = logging.getLogger(__name__)
|
58 |
|
59 |
# Ensure data directory exists
|
@@ -76,65 +78,65 @@ custom_theme = gr.themes.Default(
|
|
76 |
primary_hue=colors.slate,
|
77 |
secondary_hue=colors.slate,
|
78 |
neutral_hue=colors.neutral,
|
79 |
-
font=(fonts.GoogleFont("Inter"), "sans-serif")
|
80 |
).set(
|
81 |
# font_size="16px",
|
82 |
body_background_fill="#0f0f10",
|
83 |
body_background_fill_dark="#0f0f10",
|
84 |
body_text_color="#f4f4f5",
|
85 |
body_text_color_subdued="#a1a1aa",
|
86 |
-
block_background_fill="#1e1e1e",
|
87 |
-
block_border_color="#333333",
|
88 |
block_shadow="none",
|
89 |
# Swapped primary and secondary button styles
|
90 |
-
button_primary_background_fill="#121212",
|
91 |
button_primary_text_color="#f4f4f5",
|
92 |
-
button_primary_border_color="#333333",
|
93 |
button_secondary_background_fill="#f4f4f5",
|
94 |
button_secondary_text_color="#0f0f10",
|
95 |
button_secondary_border_color="#f4f4f5",
|
96 |
-
input_background_fill="#1e1e1e",
|
97 |
-
input_border_color="#333333",
|
98 |
input_placeholder_color="#71717a",
|
99 |
-
table_border_color="#333333",
|
100 |
-
table_even_background_fill="#2d2d2d",
|
101 |
-
table_odd_background_fill="#1e1e1e",
|
102 |
table_text_color="#f4f4f5",
|
103 |
link_text_color="#ffffff",
|
104 |
-
border_color_primary="#333333",
|
105 |
-
background_fill_secondary="#333333",
|
106 |
color_accent="#f4f4f5",
|
107 |
-
border_color_accent="#333333",
|
108 |
-
button_primary_background_fill_hover="#424242",
|
109 |
block_title_text_color="#f4f4f5",
|
110 |
accordion_text_color="#f4f4f5",
|
111 |
-
panel_background_fill="#1e1e1e",
|
112 |
-
panel_border_color="#333333",
|
113 |
# Explicitly setting primary/secondary/accent colors/borders
|
114 |
background_fill_primary="#0f0f10",
|
115 |
background_fill_primary_dark="#0f0f10",
|
116 |
-
background_fill_secondary_dark="#333333",
|
117 |
-
border_color_primary_dark="#333333",
|
118 |
-
border_color_accent_dark="#333333",
|
119 |
-
border_color_accent_subdued="#424242",
|
120 |
border_color_accent_subdued_dark="#424242", # Cooler Grey
|
121 |
color_accent_soft="#a1a1aa",
|
122 |
color_accent_soft_dark="#a1a1aa",
|
123 |
# Explicitly setting input hover/focus states
|
124 |
-
input_background_fill_dark="#1e1e1e",
|
125 |
-
input_background_fill_focus="#424242",
|
126 |
-
input_background_fill_focus_dark="#424242"
|
127 |
-
input_background_fill_hover="#2d2d2d",
|
128 |
-
input_background_fill_hover_dark="#2d2d2d",
|
129 |
-
input_border_color_dark="#333333",
|
130 |
input_border_color_focus="#f4f4f5",
|
131 |
input_border_color_focus_dark="#f4f4f5",
|
132 |
-
input_border_color_hover="#424242",
|
133 |
-
input_border_color_hover_dark="#424242",
|
134 |
input_placeholder_color_dark="#71717a",
|
135 |
# Explicitly set dark variants for table backgrounds
|
136 |
-
table_even_background_fill_dark="#2d2d2d",
|
137 |
-
table_odd_background_fill_dark="#1e1e1e",
|
138 |
# Explicitly set dark text variants
|
139 |
body_text_color_dark="#f4f4f5",
|
140 |
body_text_color_subdued_dark="#a1a1aa",
|
@@ -142,15 +144,17 @@ custom_theme = gr.themes.Default(
|
|
142 |
accordion_text_color_dark="#f4f4f5",
|
143 |
table_text_color_dark="#f4f4f5",
|
144 |
# Explicitly set dark panel/block variants
|
145 |
-
panel_background_fill_dark="#1e1e1e",
|
146 |
-
panel_border_color_dark="#333333",
|
147 |
-
block_background_fill_dark="#1e1e1e",
|
148 |
-
block_border_color_dark="#333333",
|
149 |
)
|
150 |
|
|
|
151 |
@dataclass
|
152 |
class ColumnInfo:
|
153 |
"""Information about a column in the leaderboard."""
|
|
|
154 |
name: str
|
155 |
display_name: str
|
156 |
type: str = "text"
|
@@ -158,6 +162,7 @@ class ColumnInfo:
|
|
158 |
never_hidden: bool = False
|
159 |
displayed_by_default: bool = True
|
160 |
|
|
|
161 |
def update_column_choices(df):
|
162 |
"""Update column choices based on what's actually in the dataframe"""
|
163 |
if df is None or df.empty:
|
@@ -170,8 +175,11 @@ def update_column_choices(df):
|
|
170 |
all_columns = get_all_column_choices()
|
171 |
|
172 |
# Filter to only include columns that exist in the dataframe
|
173 |
-
valid_columns = [
|
174 |
-
|
|
|
|
|
|
|
175 |
|
176 |
# Return default if there are no valid columns
|
177 |
if not valid_columns:
|
@@ -179,6 +187,7 @@ def update_column_choices(df):
|
|
179 |
|
180 |
return valid_columns
|
181 |
|
|
|
182 |
# Update the column_selector initialization
|
183 |
def get_initial_columns():
|
184 |
"""Get initial columns to show in the dropdown"""
|
@@ -192,7 +201,9 @@ def get_initial_columns():
|
|
192 |
return get_default_visible_columns()
|
193 |
|
194 |
# Get default visible columns that actually exist in the dataframe
|
195 |
-
valid_defaults = [
|
|
|
|
|
196 |
|
197 |
# If none of the defaults exist, return all available columns
|
198 |
if not valid_defaults:
|
@@ -203,6 +214,7 @@ def get_initial_columns():
|
|
203 |
logger.error(f"Error getting initial columns: {e}")
|
204 |
return get_default_visible_columns()
|
205 |
|
|
|
206 |
def init_leaderboard(dataframe, visible_columns=None):
|
207 |
"""
|
208 |
Initialize a standard Gradio Dataframe component for the leaderboard.
|
@@ -216,7 +228,9 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
216 |
# print("\n\n", "dataframe", dataframe, "--------------------------------\n\n")
|
217 |
|
218 |
# Determine which columns to display
|
219 |
-
display_column_names = [
|
|
|
|
|
220 |
hidden_column_names = [getattr(GUARDBENCH_COLUMN, col).name for col in HIDDEN_COLS]
|
221 |
|
222 |
# Columns that should always be shown
|
@@ -225,7 +239,9 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
225 |
# Use provided visible columns if specified, otherwise use default
|
226 |
if visible_columns is None:
|
227 |
# Determine which columns to show initially
|
228 |
-
visible_columns = [
|
|
|
|
|
229 |
|
230 |
# Always include the never-hidden columns
|
231 |
for col in always_visible:
|
@@ -238,13 +254,13 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
238 |
# Map GuardBench column types to Gradio's expected datatype strings
|
239 |
# Valid Gradio datatypes are: 'str', 'number', 'bool', 'date', 'markdown', 'html', 'image'
|
240 |
type_mapping = {
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
}
|
249 |
|
250 |
# Create a list of datatypes in the format Gradio expects
|
@@ -256,26 +272,26 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
256 |
if getattr(GUARDBENCH_COLUMN, display_col).name == col:
|
257 |
orig_type = getattr(GUARDBENCH_COLUMN, display_col).type
|
258 |
# Map to Gradio's expected types
|
259 |
-
col_type = type_mapping.get(orig_type,
|
260 |
break
|
261 |
|
262 |
# Default to 'str' if type not found or not mappable
|
263 |
if col_type is None:
|
264 |
-
col_type =
|
265 |
|
266 |
datatypes.append(col_type)
|
267 |
|
268 |
# Create a dummy column for search functionality if it doesn't exist
|
269 |
-
if
|
270 |
-
dataframe[
|
271 |
-
lambda row:
|
272 |
-
axis=1
|
273 |
)
|
274 |
|
275 |
# Select only the visible columns for display
|
276 |
-
visible_columns.remove(
|
277 |
|
278 |
-
visible_columns = [
|
279 |
display_df = dataframe[visible_columns].copy()
|
280 |
|
281 |
# print(f"--- DataFrame inside init_leaderboard (before rounding) ---")
|
@@ -288,17 +304,25 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
288 |
# Avoid rounding integer columns like counts
|
289 |
if not pd.api.types.is_integer_dtype(display_df[col]):
|
290 |
# Format floats to exactly 3 decimal places, preserving trailing zeros
|
291 |
-
display_df[col] = display_df[col].apply(
|
292 |
-
|
|
|
293 |
|
294 |
-
column_info_map = {
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
# Rename columns in the DataFrame
|
298 |
display_df.rename(columns=column_mapping, inplace=True)
|
299 |
|
300 |
# Apply styling - note: styling might need adjustment if it relies on column names
|
301 |
-
styler = display_df.style.set_properties(**{
|
|
|
|
|
302 |
|
303 |
return gr.Dataframe(
|
304 |
value=styler,
|
@@ -307,11 +331,13 @@ def init_leaderboard(dataframe, visible_columns=None):
|
|
307 |
wrap=True,
|
308 |
height=2500,
|
309 |
elem_id="leaderboard-table",
|
310 |
-
row_count=len(display_df)
|
311 |
)
|
312 |
|
313 |
|
314 |
-
def search_filter_leaderboard(
|
|
|
|
|
315 |
"""
|
316 |
Filter the leaderboard based on search query and model types.
|
317 |
"""
|
@@ -321,23 +347,29 @@ def search_filter_leaderboard(df, search_query="", model_types=None, version=CUR
|
|
321 |
filtered_df = df.copy()
|
322 |
|
323 |
# Add search dummy column if it doesn't exist
|
324 |
-
if
|
325 |
-
filtered_df[
|
326 |
-
lambda row:
|
327 |
-
axis=1
|
328 |
)
|
329 |
|
330 |
# Apply model type filter
|
331 |
if model_types and len(model_types) > 0:
|
332 |
-
filtered_df = filtered_df[
|
|
|
|
|
333 |
|
334 |
# Apply search query
|
335 |
if search_query:
|
336 |
-
search_terms = [
|
|
|
|
|
337 |
if search_terms:
|
338 |
combined_mask = None
|
339 |
for term in search_terms:
|
340 |
-
mask = filtered_df[
|
|
|
|
|
341 |
if combined_mask is None:
|
342 |
combined_mask = mask
|
343 |
else:
|
@@ -347,11 +379,13 @@ def search_filter_leaderboard(df, search_query="", model_types=None, version=CUR
|
|
347 |
filtered_df = filtered_df[combined_mask]
|
348 |
|
349 |
# Drop the search dummy column before returning
|
350 |
-
visible_columns = [col for col in filtered_df.columns if col !=
|
351 |
return filtered_df[visible_columns]
|
352 |
|
353 |
|
354 |
-
def refresh_data_with_filters(
|
|
|
|
|
355 |
"""
|
356 |
Refresh the leaderboard data and update all components with filtering.
|
357 |
Ensures we handle cases where dataframes might have limited columns.
|
@@ -362,14 +396,27 @@ def refresh_data_with_filters(version=CURRENT_VERSION, search_query="", model_ty
|
|
362 |
# Get new data
|
363 |
main_df = get_leaderboard_df(version=version)
|
364 |
LEADERBOARD_DF = main_df
|
365 |
-
category_dfs = [
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
# Log the actual columns we have
|
369 |
logger.info(f"Main dataframe columns: {list(main_df.columns)}")
|
370 |
|
371 |
# Apply filters to each dataframe
|
372 |
-
filtered_main_df = search_filter_leaderboard(
|
|
|
|
|
373 |
filtered_category_dfs = [
|
374 |
search_filter_leaderboard(df, search_query, model_types, version)
|
375 |
for df in category_dfs
|
@@ -381,15 +428,30 @@ def refresh_data_with_filters(version=CURRENT_VERSION, search_query="", model_ty
|
|
381 |
# Filter selected columns to only those available in the data
|
382 |
if selected_columns:
|
383 |
# Convert display names to internal names first
|
384 |
-
internal_selected_columns = [
|
385 |
-
|
386 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
# Fallback if conversion/filtering leads to empty selection
|
388 |
-
valid_selected_columns = [
|
|
|
|
|
|
|
|
|
389 |
else:
|
390 |
# If no columns were selected in the dropdown, use default visible columns that exist
|
391 |
-
|
392 |
-
|
|
|
393 |
|
394 |
# Initialize dataframes for display with valid selected columns
|
395 |
main_dataframe = init_leaderboard(filtered_main_df, valid_selected_columns)
|
@@ -398,9 +460,11 @@ def refresh_data_with_filters(version=CURRENT_VERSION, search_query="", model_ty
|
|
398 |
category_dataframes = []
|
399 |
for df in filtered_category_dfs:
|
400 |
df_columns = list(df.columns)
|
401 |
-
df_valid_columns = [
|
402 |
-
|
403 |
-
|
|
|
|
|
404 |
category_dataframes.append(init_leaderboard(df, df_valid_columns))
|
405 |
|
406 |
return main_dataframe, *category_dataframes
|
@@ -408,7 +472,9 @@ def refresh_data_with_filters(version=CURRENT_VERSION, search_query="", model_ty
|
|
408 |
except Exception as e:
|
409 |
logger.error(f"Error in refresh with filters: {e}")
|
410 |
# Return the current leaderboards on error
|
411 |
-
return leaderboard, *[
|
|
|
|
|
412 |
|
413 |
|
414 |
def submit_results(
|
@@ -421,7 +487,7 @@ def submit_results(
|
|
421 |
mode: str,
|
422 |
submission_file: tempfile._TemporaryFileWrapper,
|
423 |
version: str,
|
424 |
-
guard_model_type: GuardModelType
|
425 |
):
|
426 |
"""
|
427 |
Handle submission of results with model metadata.
|
@@ -451,7 +517,7 @@ def submit_results(
|
|
451 |
"model_type": model_type,
|
452 |
"mode": mode,
|
453 |
"version": version,
|
454 |
-
"guard_model_type": guard_model_type
|
455 |
}
|
456 |
|
457 |
# Process the submission
|
@@ -460,7 +526,9 @@ def submit_results(
|
|
460 |
# Refresh the leaderboard data
|
461 |
global LEADERBOARD_DF
|
462 |
try:
|
463 |
-
logger.info(
|
|
|
|
|
464 |
LEADERBOARD_DF = get_leaderboard_df(version=version)
|
465 |
logger.info("Refreshed leaderboard data after submission")
|
466 |
except Exception as e:
|
@@ -477,7 +545,10 @@ def refresh_data(version=CURRENT_VERSION):
|
|
477 |
logger.info(f"Performing scheduled refresh of leaderboard data...")
|
478 |
# Get new data
|
479 |
main_df = get_leaderboard_df(version=version)
|
480 |
-
category_dfs = [
|
|
|
|
|
|
|
481 |
|
482 |
# For gr.Dataframe, we return the actual dataframes
|
483 |
return main_df, *category_dfs
|
@@ -493,14 +564,19 @@ def update_leaderboards(version):
|
|
493 |
"""
|
494 |
try:
|
495 |
new_df = get_leaderboard_df(version=version)
|
496 |
-
category_dfs = [
|
|
|
|
|
|
|
497 |
return new_df, *category_dfs
|
498 |
except Exception as e:
|
499 |
logger.error(f"Error updating leaderboards for version {version}: {e}")
|
500 |
return None, *[None for _ in CATEGORIES]
|
501 |
|
502 |
|
503 |
-
def create_performance_plot(
|
|
|
|
|
504 |
"""
|
505 |
Create a radar plot comparing model performance for selected models.
|
506 |
"""
|
@@ -513,7 +589,7 @@ def create_performance_plot(selected_models, category, metric="f1_binary", versi
|
|
513 |
return go.Figure()
|
514 |
|
515 |
# Filter for selected models
|
516 |
-
df = df[df[
|
517 |
|
518 |
# Get the relevant metric columns
|
519 |
metric_cols = [col for col in df.columns if metric in col]
|
@@ -522,52 +598,59 @@ def create_performance_plot(selected_models, category, metric="f1_binary", versi
|
|
522 |
fig = go.Figure()
|
523 |
|
524 |
# Custom colors for different models
|
525 |
-
colors = [
|
|
|
|
|
|
|
|
|
|
|
526 |
|
527 |
# Add traces for each model
|
528 |
for idx, model in enumerate(selected_models):
|
529 |
-
model_data = df[df[
|
530 |
if not model_data.empty:
|
531 |
values = model_data[metric_cols].values[0].tolist()
|
532 |
# Add the first value again at the end to complete the polygon
|
533 |
values = values + [values[0]]
|
534 |
|
535 |
# Clean up test type names
|
536 |
-
categories = [col.replace(f
|
537 |
# Add the first category again at the end to complete the polygon
|
538 |
categories = categories + [categories[0]]
|
539 |
|
540 |
-
fig.add_trace(
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
|
|
|
|
547 |
|
548 |
# Update layout with all settings at once
|
549 |
fig.update_layout(
|
550 |
-
paper_bgcolor=
|
551 |
-
plot_bgcolor=
|
552 |
-
font={
|
553 |
title={
|
554 |
-
|
555 |
-
|
556 |
},
|
557 |
polar=dict(
|
558 |
-
bgcolor=
|
559 |
radialaxis=dict(
|
560 |
visible=True,
|
561 |
range=[0, 1],
|
562 |
-
gridcolor=
|
563 |
-
linecolor=
|
564 |
-
tickfont={
|
565 |
),
|
566 |
angularaxis=dict(
|
567 |
-
gridcolor=
|
568 |
-
linecolor=
|
569 |
-
tickfont={
|
570 |
-
)
|
571 |
),
|
572 |
height=600,
|
573 |
showlegend=True,
|
@@ -576,9 +659,9 @@ def create_performance_plot(selected_models, category, metric="f1_binary", versi
|
|
576 |
y=0.99,
|
577 |
xanchor="right",
|
578 |
x=0.99,
|
579 |
-
bgcolor=
|
580 |
-
font={
|
581 |
-
)
|
582 |
)
|
583 |
|
584 |
return fig
|
@@ -591,7 +674,7 @@ def update_model_choices(version):
|
|
591 |
df = get_leaderboard_df(version=version)
|
592 |
if df.empty:
|
593 |
return []
|
594 |
-
return sorted(df[
|
595 |
|
596 |
|
597 |
def update_visualization(selected_models, selected_category, selected_metric, version):
|
@@ -600,31 +683,33 @@ def update_visualization(selected_models, selected_category, selected_metric, ve
|
|
600 |
"""
|
601 |
if not selected_models:
|
602 |
return go.Figure()
|
603 |
-
return create_performance_plot(
|
|
|
|
|
604 |
|
605 |
|
606 |
# Create Gradio app
|
607 |
demo = gr.Blocks(css=custom_css, theme=custom_theme)
|
608 |
|
609 |
CATEGORY_DISPLAY_MAP = {
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
}
|
629 |
# Create reverse mapping for lookups
|
630 |
CATEGORY_REVERSE_MAP = {v: k for k, v in CATEGORY_DISPLAY_MAP.items()}
|
@@ -637,7 +722,6 @@ with demo:
|
|
637 |
with gr.Row():
|
638 |
tabs = gr.Tabs(elem_classes="tab-buttons")
|
639 |
|
640 |
-
|
641 |
with tabs:
|
642 |
with gr.TabItem("Leaderboard", elem_id="guardbench-leaderboard-tab", id=0):
|
643 |
with gr.Row():
|
@@ -648,7 +732,7 @@ with demo:
|
|
648 |
interactive=True,
|
649 |
elem_classes="version-selector",
|
650 |
scale=1,
|
651 |
-
visible=False
|
652 |
)
|
653 |
|
654 |
with gr.Row():
|
@@ -656,15 +740,17 @@ with demo:
|
|
656 |
placeholder="Search by models (use ; to split)",
|
657 |
label="Search",
|
658 |
elem_id="search-bar",
|
659 |
-
scale=2
|
660 |
)
|
661 |
model_type_filter = gr.Dropdown(
|
662 |
-
choices=[
|
|
|
|
|
663 |
label="Access Type",
|
664 |
multiselect=True,
|
665 |
value=[],
|
666 |
interactive=True,
|
667 |
-
scale=1
|
668 |
)
|
669 |
column_selector = gr.Dropdown(
|
670 |
choices=get_all_column_choices(),
|
@@ -672,10 +758,12 @@ with demo:
|
|
672 |
multiselect=True,
|
673 |
value=get_initial_columns(),
|
674 |
interactive=True,
|
675 |
-
scale=1
|
676 |
)
|
677 |
with gr.Row():
|
678 |
-
refresh_button = gr.Button(
|
|
|
|
|
679 |
|
680 |
# Create tabs for each category
|
681 |
with gr.Tabs(elem_classes="category-tabs") as category_tabs:
|
@@ -688,49 +776,99 @@ with demo:
|
|
688 |
display_name = CATEGORY_DISPLAY_MAP.get(category, category)
|
689 |
elem_id = f"category-{display_name.lower().replace(' ', '-').replace('&', 'and')}-tab"
|
690 |
with gr.TabItem(display_name, elem_id=elem_id):
|
691 |
-
category_df = get_category_leaderboard_df(
|
|
|
|
|
692 |
category_leaderboard = init_leaderboard(category_df)
|
693 |
|
694 |
# Connect search and filter inputs to update function
|
695 |
-
def update_with_search_filters(
|
|
|
|
|
|
|
|
|
|
|
696 |
"""
|
697 |
Update the leaderboards with search and filter settings.
|
698 |
"""
|
699 |
-
return refresh_data_with_filters(
|
|
|
|
|
700 |
|
701 |
# Refresh button functionality
|
702 |
-
def refresh_and_update(
|
|
|
|
|
703 |
"""
|
704 |
Refresh data, update LEADERBOARD_DF, and return updated components.
|
705 |
"""
|
706 |
global LEADERBOARD_DF
|
707 |
main_df = get_leaderboard_df(version=version)
|
708 |
LEADERBOARD_DF = main_df # Update the global DataFrame
|
709 |
-
return refresh_data_with_filters(
|
|
|
|
|
710 |
|
711 |
refresh_button.click(
|
712 |
fn=refresh_and_update,
|
713 |
-
inputs=[
|
714 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
715 |
# Search input functionality
|
716 |
search_input.change(
|
717 |
fn=refresh_data_with_filters,
|
718 |
-
inputs=[
|
719 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
720 |
)
|
721 |
|
722 |
# Model type filter functionality
|
723 |
model_type_filter.change(
|
724 |
fn=refresh_data_with_filters,
|
725 |
-
inputs=[
|
726 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
)
|
728 |
|
729 |
# Version selector functionality
|
730 |
version_selector.change(
|
731 |
fn=refresh_data_with_filters,
|
732 |
-
inputs=[
|
733 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
734 |
)
|
735 |
|
736 |
# Update the update_columns function to handle updating all tabs at once
|
@@ -747,30 +885,52 @@ with demo:
|
|
747 |
# If no columns are selected, use default visible columns
|
748 |
if not selected_columns or len(selected_columns) == 0:
|
749 |
selected_columns = get_default_visible_columns()
|
750 |
-
logger.info(
|
|
|
|
|
751 |
|
752 |
# Convert display names to internal names
|
753 |
-
internal_selected_columns = [
|
754 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
755 |
|
756 |
# Get the current data with ALL columns preserved
|
757 |
main_df = get_leaderboard_df(version=version_selector.value)
|
758 |
|
759 |
# Get category dataframes with ALL columns preserved
|
760 |
-
category_dfs = [
|
761 |
-
|
|
|
|
|
|
|
|
|
762 |
|
763 |
# Log columns for debugging
|
764 |
logger.info(f"Main dataframe columns: {list(main_df.columns)}")
|
765 |
-
logger.info(
|
|
|
|
|
766 |
|
767 |
# IMPORTANT: Make sure model_name is always included
|
768 |
-
if
|
769 |
-
|
|
|
|
|
|
|
|
|
|
|
770 |
|
771 |
# Initialize the main leaderboard with the selected columns
|
772 |
# We're passing the internal_selected_columns directly to preserve the selection
|
773 |
-
main_leaderboard = init_leaderboard(
|
|
|
|
|
774 |
|
775 |
# Initialize category dataframes with the same selected columns
|
776 |
# This ensures consistency across all tabs
|
@@ -778,24 +938,33 @@ with demo:
|
|
778 |
for df in category_dfs:
|
779 |
# Use the same selected columns for each category
|
780 |
# init_leaderboard will automatically handle filtering to columns that exist
|
781 |
-
category_leaderboards.append(
|
|
|
|
|
782 |
|
783 |
return main_leaderboard, *category_leaderboards
|
784 |
|
785 |
except Exception as e:
|
786 |
logger.error(f"Error updating columns: {e}")
|
787 |
import traceback
|
|
|
788 |
logger.error(traceback.format_exc())
|
789 |
-
return leaderboard, *[
|
|
|
|
|
|
|
790 |
|
791 |
# Connect column selector to update function
|
792 |
column_selector.change(
|
793 |
fn=update_columns,
|
794 |
inputs=[column_selector],
|
795 |
-
outputs=[leaderboard]
|
|
|
|
|
|
|
|
|
796 |
)
|
797 |
|
798 |
-
|
799 |
with gr.TabItem("Visualize", elem_id="guardbench-viz-tab", id=1):
|
800 |
with gr.Row():
|
801 |
with gr.Column():
|
@@ -804,91 +973,132 @@ with demo:
|
|
804 |
label="Benchmark Version",
|
805 |
value=CURRENT_VERSION,
|
806 |
interactive=True,
|
807 |
-
visible=False
|
808 |
)
|
|
|
809 |
# New: Mode selector
|
810 |
def get_model_mode_choices(version):
|
811 |
df = get_leaderboard_df(version=version)
|
812 |
if df.empty:
|
813 |
return []
|
814 |
# Return list of tuples (model_name, mode)
|
815 |
-
return sorted(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
816 |
|
817 |
model_mode_selector = gr.Dropdown(
|
818 |
choices=get_model_mode_choices(CURRENT_VERSION),
|
819 |
label="Select Model(s) [Mode] to Compare",
|
820 |
multiselect=True,
|
821 |
-
interactive=True
|
822 |
)
|
823 |
with gr.Column():
|
824 |
# Add Overall Performance to categories, use display names
|
825 |
-
viz_categories_display = ["All Results"] + [
|
|
|
|
|
826 |
category_selector = gr.Dropdown(
|
827 |
choices=viz_categories_display,
|
828 |
label="Select Category",
|
829 |
value=viz_categories_display[0],
|
830 |
-
interactive=True
|
831 |
)
|
832 |
metric_selector = gr.Dropdown(
|
833 |
-
choices=[
|
|
|
|
|
|
|
|
|
|
|
|
|
834 |
label="Select Metric",
|
835 |
value="accuracy",
|
836 |
-
interactive=True
|
837 |
)
|
838 |
|
839 |
plot_output = gr.Plot()
|
840 |
|
841 |
# Update visualization when any selector changes
|
842 |
-
def update_visualization_with_mode(
|
|
|
|
|
843 |
if not selected_model_modes:
|
844 |
return go.Figure()
|
845 |
-
df =
|
|
|
|
|
|
|
|
|
|
|
|
|
846 |
if df.empty:
|
847 |
return go.Figure()
|
848 |
# Parse selected_model_modes into model_name and mode
|
849 |
selected_pairs = [s.rsplit(" [", 1) for s in selected_model_modes]
|
850 |
-
selected_pairs = [
|
851 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
852 |
filtered_df = df[mask]
|
853 |
-
metric_cols = [
|
|
|
|
|
854 |
fig = go.Figure()
|
855 |
-
colors = [
|
856 |
for idx, (model_name, mode) in enumerate(selected_pairs):
|
857 |
-
model_data = filtered_df[
|
|
|
|
|
|
|
858 |
if not model_data.empty:
|
859 |
values = model_data[metric_cols].values[0].tolist()
|
860 |
values = values + [values[0]]
|
861 |
-
categories = [
|
|
|
|
|
|
|
862 |
categories = categories + [categories[0]]
|
863 |
-
fig.add_trace(
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
|
|
|
|
870 |
fig.update_layout(
|
871 |
-
paper_bgcolor=
|
872 |
-
plot_bgcolor=
|
873 |
-
font={
|
874 |
title={
|
875 |
-
|
876 |
-
|
877 |
},
|
878 |
polar=dict(
|
879 |
-
bgcolor=
|
880 |
radialaxis=dict(
|
881 |
visible=True,
|
882 |
range=[0, 1],
|
883 |
-
gridcolor=
|
884 |
-
linecolor=
|
885 |
-
tickfont={
|
886 |
),
|
887 |
angularaxis=dict(
|
888 |
-
gridcolor=
|
889 |
-
linecolor=
|
890 |
-
tickfont={
|
891 |
-
)
|
892 |
),
|
893 |
height=600,
|
894 |
showlegend=True,
|
@@ -897,25 +1107,37 @@ with demo:
|
|
897 |
y=0.99,
|
898 |
xanchor="right",
|
899 |
x=0.99,
|
900 |
-
bgcolor=
|
901 |
-
font={
|
902 |
-
)
|
903 |
)
|
904 |
return fig
|
905 |
|
906 |
# Connect selectors to update function
|
907 |
-
for control in [
|
|
|
|
|
|
|
|
|
|
|
908 |
control.change(
|
909 |
-
fn=lambda smm, sc, s_metric, v: update_visualization_with_mode(
|
910 |
-
|
911 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
912 |
)
|
913 |
|
914 |
# Update model_mode_selector choices when version changes
|
915 |
viz_version_selector.change(
|
916 |
fn=get_model_mode_choices,
|
917 |
inputs=[viz_version_selector],
|
918 |
-
outputs=[model_mode_selector]
|
919 |
)
|
920 |
|
921 |
# with gr.TabItem("About", elem_id="guardbench-about-tab", id=2):
|
@@ -935,7 +1157,7 @@ with demo:
|
|
935 |
value=CURRENT_VERSION,
|
936 |
interactive=True,
|
937 |
elem_classes="version-selector",
|
938 |
-
visible=False
|
939 |
)
|
940 |
|
941 |
with gr.Row():
|
@@ -948,9 +1170,15 @@ with demo:
|
|
948 |
value=None,
|
949 |
interactive=True,
|
950 |
)
|
951 |
-
revision_name_textbox = gr.Textbox(
|
|
|
|
|
952 |
model_type = gr.Dropdown(
|
953 |
-
choices=[
|
|
|
|
|
|
|
|
|
954 |
label="Model type",
|
955 |
multiselect=False,
|
956 |
value=None,
|
@@ -966,7 +1194,9 @@ with demo:
|
|
966 |
|
967 |
with gr.Column():
|
968 |
precision = gr.Dropdown(
|
969 |
-
choices=[
|
|
|
|
|
970 |
label="Precision",
|
971 |
multiselect=False,
|
972 |
value="float16",
|
@@ -979,12 +1209,13 @@ with demo:
|
|
979 |
value="Original",
|
980 |
interactive=True,
|
981 |
)
|
982 |
-
base_model_name_textbox = gr.Textbox(
|
|
|
|
|
983 |
|
984 |
with gr.Row():
|
985 |
file_input = gr.File(
|
986 |
-
label="Upload JSONL Results File",
|
987 |
-
file_types=[".jsonl"]
|
988 |
)
|
989 |
|
990 |
submit_button = gr.Button("Submit Results")
|
@@ -1002,25 +1233,34 @@ with demo:
|
|
1002 |
mode_selector,
|
1003 |
file_input,
|
1004 |
submission_version_selector,
|
1005 |
-
guard_model_type
|
1006 |
],
|
1007 |
-
outputs=result_output
|
1008 |
)
|
1009 |
|
1010 |
# Version selector functionality
|
1011 |
version_selector.change(
|
1012 |
fn=update_leaderboards,
|
1013 |
inputs=[version_selector],
|
1014 |
-
outputs=[leaderboard]
|
1015 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1016 |
|
1017 |
|
1018 |
# Set up the scheduler to refresh data periodically
|
1019 |
scheduler = BackgroundScheduler()
|
1020 |
-
scheduler.add_job(refresh_data,
|
1021 |
scheduler.start()
|
1022 |
|
1023 |
# Launch the app
|
1024 |
if __name__ == "__main__":
|
1025 |
-
|
1026 |
demo.launch()
|
|
|
47 |
RESULTS_DATASET_ID,
|
48 |
SUBMITTER_TOKEN,
|
49 |
TOKEN,
|
50 |
+
DATA_PATH,
|
51 |
)
|
52 |
from src.populate import get_leaderboard_df, get_category_leaderboard_df
|
53 |
from src.submission.submit import process_submission
|
54 |
|
55 |
# Configure logging
|
56 |
+
logging.basicConfig(
|
57 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
58 |
+
)
|
59 |
logger = logging.getLogger(__name__)
|
60 |
|
61 |
# Ensure data directory exists
|
|
|
78 |
primary_hue=colors.slate,
|
79 |
secondary_hue=colors.slate,
|
80 |
neutral_hue=colors.neutral,
|
81 |
+
font=(fonts.GoogleFont("Inter"), "sans-serif"),
|
82 |
).set(
|
83 |
# font_size="16px",
|
84 |
body_background_fill="#0f0f10",
|
85 |
body_background_fill_dark="#0f0f10",
|
86 |
body_text_color="#f4f4f5",
|
87 |
body_text_color_subdued="#a1a1aa",
|
88 |
+
block_background_fill="#1e1e1e", # Cooler Grey
|
89 |
+
block_border_color="#333333", # Cooler Grey
|
90 |
block_shadow="none",
|
91 |
# Swapped primary and secondary button styles
|
92 |
+
button_primary_background_fill="#121212", # Changed to specific color for Refresh button
|
93 |
button_primary_text_color="#f4f4f5",
|
94 |
+
button_primary_border_color="#333333", # Keep border grey or change to #121212?
|
95 |
button_secondary_background_fill="#f4f4f5",
|
96 |
button_secondary_text_color="#0f0f10",
|
97 |
button_secondary_border_color="#f4f4f5",
|
98 |
+
input_background_fill="#1e1e1e", # Cooler Grey
|
99 |
+
input_border_color="#333333", # Cooler Grey
|
100 |
input_placeholder_color="#71717a",
|
101 |
+
table_border_color="#333333", # Cooler Grey
|
102 |
+
table_even_background_fill="#2d2d2d", # Cooler Grey (Slightly lighter)
|
103 |
+
table_odd_background_fill="#1e1e1e", # Cooler Grey
|
104 |
table_text_color="#f4f4f5",
|
105 |
link_text_color="#ffffff",
|
106 |
+
border_color_primary="#333333", # Cooler Grey
|
107 |
+
background_fill_secondary="#333333", # Cooler Grey
|
108 |
color_accent="#f4f4f5",
|
109 |
+
border_color_accent="#333333", # Cooler Grey
|
110 |
+
button_primary_background_fill_hover="#424242", # Cooler Grey
|
111 |
block_title_text_color="#f4f4f5",
|
112 |
accordion_text_color="#f4f4f5",
|
113 |
+
panel_background_fill="#1e1e1e", # Cooler Grey
|
114 |
+
panel_border_color="#333333", # Cooler Grey
|
115 |
# Explicitly setting primary/secondary/accent colors/borders
|
116 |
background_fill_primary="#0f0f10",
|
117 |
background_fill_primary_dark="#0f0f10",
|
118 |
+
background_fill_secondary_dark="#333333", # Cooler Grey
|
119 |
+
border_color_primary_dark="#333333", # Cooler Grey
|
120 |
+
border_color_accent_dark="#333333", # Cooler Grey
|
121 |
+
border_color_accent_subdued="#424242", # Cooler Grey
|
122 |
border_color_accent_subdued_dark="#424242", # Cooler Grey
|
123 |
color_accent_soft="#a1a1aa",
|
124 |
color_accent_soft_dark="#a1a1aa",
|
125 |
# Explicitly setting input hover/focus states
|
126 |
+
input_background_fill_dark="#1e1e1e", # Cooler Grey
|
127 |
+
input_background_fill_focus="#424242", # Cooler Grey
|
128 |
+
input_background_fill_focus_dark="#424242", # Cooler Grey
|
129 |
+
input_background_fill_hover="#2d2d2d", # Cooler Grey
|
130 |
+
input_background_fill_hover_dark="#2d2d2d", # Cooler Grey
|
131 |
+
input_border_color_dark="#333333", # Cooler Grey
|
132 |
input_border_color_focus="#f4f4f5",
|
133 |
input_border_color_focus_dark="#f4f4f5",
|
134 |
+
input_border_color_hover="#424242", # Cooler Grey
|
135 |
+
input_border_color_hover_dark="#424242", # Cooler Grey
|
136 |
input_placeholder_color_dark="#71717a",
|
137 |
# Explicitly set dark variants for table backgrounds
|
138 |
+
table_even_background_fill_dark="#2d2d2d", # Cooler Grey
|
139 |
+
table_odd_background_fill_dark="#1e1e1e", # Cooler Grey
|
140 |
# Explicitly set dark text variants
|
141 |
body_text_color_dark="#f4f4f5",
|
142 |
body_text_color_subdued_dark="#a1a1aa",
|
|
|
144 |
accordion_text_color_dark="#f4f4f5",
|
145 |
table_text_color_dark="#f4f4f5",
|
146 |
# Explicitly set dark panel/block variants
|
147 |
+
panel_background_fill_dark="#1e1e1e", # Cooler Grey
|
148 |
+
panel_border_color_dark="#333333", # Cooler Grey
|
149 |
+
block_background_fill_dark="#1e1e1e", # Cooler Grey
|
150 |
+
block_border_color_dark="#333333", # Cooler Grey
|
151 |
)
|
152 |
|
153 |
+
|
154 |
@dataclass
|
155 |
class ColumnInfo:
|
156 |
"""Information about a column in the leaderboard."""
|
157 |
+
|
158 |
name: str
|
159 |
display_name: str
|
160 |
type: str = "text"
|
|
|
162 |
never_hidden: bool = False
|
163 |
displayed_by_default: bool = True
|
164 |
|
165 |
+
|
166 |
def update_column_choices(df):
|
167 |
"""Update column choices based on what's actually in the dataframe"""
|
168 |
if df is None or df.empty:
|
|
|
175 |
all_columns = get_all_column_choices()
|
176 |
|
177 |
# Filter to only include columns that exist in the dataframe
|
178 |
+
valid_columns = [
|
179 |
+
(col_name, display_name)
|
180 |
+
for col_name, display_name in all_columns
|
181 |
+
if col_name in existing_columns
|
182 |
+
]
|
183 |
|
184 |
# Return default if there are no valid columns
|
185 |
if not valid_columns:
|
|
|
187 |
|
188 |
return valid_columns
|
189 |
|
190 |
+
|
191 |
# Update the column_selector initialization
|
192 |
def get_initial_columns():
|
193 |
"""Get initial columns to show in the dropdown"""
|
|
|
201 |
return get_default_visible_columns()
|
202 |
|
203 |
# Get default visible columns that actually exist in the dataframe
|
204 |
+
valid_defaults = [
|
205 |
+
col for col in get_default_visible_columns() if col in available_cols
|
206 |
+
]
|
207 |
|
208 |
# If none of the defaults exist, return all available columns
|
209 |
if not valid_defaults:
|
|
|
214 |
logger.error(f"Error getting initial columns: {e}")
|
215 |
return get_default_visible_columns()
|
216 |
|
217 |
+
|
218 |
def init_leaderboard(dataframe, visible_columns=None):
|
219 |
"""
|
220 |
Initialize a standard Gradio Dataframe component for the leaderboard.
|
|
|
228 |
# print("\n\n", "dataframe", dataframe, "--------------------------------\n\n")
|
229 |
|
230 |
# Determine which columns to display
|
231 |
+
display_column_names = [
|
232 |
+
getattr(GUARDBENCH_COLUMN, col).name for col in DISPLAY_COLS
|
233 |
+
]
|
234 |
hidden_column_names = [getattr(GUARDBENCH_COLUMN, col).name for col in HIDDEN_COLS]
|
235 |
|
236 |
# Columns that should always be shown
|
|
|
239 |
# Use provided visible columns if specified, otherwise use default
|
240 |
if visible_columns is None:
|
241 |
# Determine which columns to show initially
|
242 |
+
visible_columns = [
|
243 |
+
col for col in display_column_names if col not in hidden_column_names
|
244 |
+
]
|
245 |
|
246 |
# Always include the never-hidden columns
|
247 |
for col in always_visible:
|
|
|
254 |
# Map GuardBench column types to Gradio's expected datatype strings
|
255 |
# Valid Gradio datatypes are: 'str', 'number', 'bool', 'date', 'markdown', 'html', 'image'
|
256 |
type_mapping = {
|
257 |
+
"text": "str",
|
258 |
+
"number": "number",
|
259 |
+
"bool": "bool",
|
260 |
+
"date": "date",
|
261 |
+
"markdown": "markdown",
|
262 |
+
"html": "html",
|
263 |
+
"image": "image",
|
264 |
}
|
265 |
|
266 |
# Create a list of datatypes in the format Gradio expects
|
|
|
272 |
if getattr(GUARDBENCH_COLUMN, display_col).name == col:
|
273 |
orig_type = getattr(GUARDBENCH_COLUMN, display_col).type
|
274 |
# Map to Gradio's expected types
|
275 |
+
col_type = type_mapping.get(orig_type, "str")
|
276 |
break
|
277 |
|
278 |
# Default to 'str' if type not found or not mappable
|
279 |
if col_type is None:
|
280 |
+
col_type = "str"
|
281 |
|
282 |
datatypes.append(col_type)
|
283 |
|
284 |
# Create a dummy column for search functionality if it doesn't exist
|
285 |
+
if "search_dummy" not in dataframe.columns:
|
286 |
+
dataframe["search_dummy"] = dataframe.apply(
|
287 |
+
lambda row: " ".join(str(val) for val in row.values if pd.notna(val)),
|
288 |
+
axis=1,
|
289 |
)
|
290 |
|
291 |
# Select only the visible columns for display
|
292 |
+
visible_columns.remove("model_name")
|
293 |
|
294 |
+
visible_columns = ["model_name"] + visible_columns
|
295 |
display_df = dataframe[visible_columns].copy()
|
296 |
|
297 |
# print(f"--- DataFrame inside init_leaderboard (before rounding) ---")
|
|
|
304 |
# Avoid rounding integer columns like counts
|
305 |
if not pd.api.types.is_integer_dtype(display_df[col]):
|
306 |
# Format floats to exactly 3 decimal places, preserving trailing zeros
|
307 |
+
display_df[col] = display_df[col].apply(
|
308 |
+
lambda x: f"{x:.3f}" if pd.notna(x) else None
|
309 |
+
)
|
310 |
|
311 |
+
column_info_map = {
|
312 |
+
f.name: getattr(GUARDBENCH_COLUMN, f.name) for f in fields(GUARDBENCH_COLUMN)
|
313 |
+
}
|
314 |
+
column_mapping = {
|
315 |
+
col: column_info_map.get(col, ColumnInfo(col, col)).display_name
|
316 |
+
for col in visible_columns
|
317 |
+
}
|
318 |
|
319 |
# Rename columns in the DataFrame
|
320 |
display_df.rename(columns=column_mapping, inplace=True)
|
321 |
|
322 |
# Apply styling - note: styling might need adjustment if it relies on column names
|
323 |
+
styler = display_df.style.set_properties(**{"text-align": "right"}).set_properties(
|
324 |
+
subset=["model_name"], **{"width": "100px"}
|
325 |
+
)
|
326 |
|
327 |
return gr.Dataframe(
|
328 |
value=styler,
|
|
|
331 |
wrap=True,
|
332 |
height=2500,
|
333 |
elem_id="leaderboard-table",
|
334 |
+
row_count=len(display_df),
|
335 |
)
|
336 |
|
337 |
|
338 |
+
def search_filter_leaderboard(
|
339 |
+
df, search_query="", model_types=None, version=CURRENT_VERSION
|
340 |
+
):
|
341 |
"""
|
342 |
Filter the leaderboard based on search query and model types.
|
343 |
"""
|
|
|
347 |
filtered_df = df.copy()
|
348 |
|
349 |
# Add search dummy column if it doesn't exist
|
350 |
+
if "search_dummy" not in filtered_df.columns:
|
351 |
+
filtered_df["search_dummy"] = filtered_df.apply(
|
352 |
+
lambda row: " ".join(str(val) for val in row.values if pd.notna(val)),
|
353 |
+
axis=1,
|
354 |
)
|
355 |
|
356 |
# Apply model type filter
|
357 |
if model_types and len(model_types) > 0:
|
358 |
+
filtered_df = filtered_df[
|
359 |
+
filtered_df[GUARDBENCH_COLUMN.model_type.name].isin(model_types)
|
360 |
+
]
|
361 |
|
362 |
# Apply search query
|
363 |
if search_query:
|
364 |
+
search_terms = [
|
365 |
+
term.strip() for term in search_query.split(";") if term.strip()
|
366 |
+
]
|
367 |
if search_terms:
|
368 |
combined_mask = None
|
369 |
for term in search_terms:
|
370 |
+
mask = filtered_df["search_dummy"].str.contains(
|
371 |
+
term, case=False, na=False
|
372 |
+
)
|
373 |
if combined_mask is None:
|
374 |
combined_mask = mask
|
375 |
else:
|
|
|
379 |
filtered_df = filtered_df[combined_mask]
|
380 |
|
381 |
# Drop the search dummy column before returning
|
382 |
+
visible_columns = [col for col in filtered_df.columns if col != "search_dummy"]
|
383 |
return filtered_df[visible_columns]
|
384 |
|
385 |
|
386 |
+
def refresh_data_with_filters(
|
387 |
+
version=CURRENT_VERSION, search_query="", model_types=None, selected_columns=None
|
388 |
+
):
|
389 |
"""
|
390 |
Refresh the leaderboard data and update all components with filtering.
|
391 |
Ensures we handle cases where dataframes might have limited columns.
|
|
|
396 |
# Get new data
|
397 |
main_df = get_leaderboard_df(version=version)
|
398 |
LEADERBOARD_DF = main_df
|
399 |
+
category_dfs = [
|
400 |
+
get_category_leaderboard_df(category, version=version)
|
401 |
+
for category in CATEGORIES
|
402 |
+
]
|
403 |
+
selected_columns = [
|
404 |
+
x.lower()
|
405 |
+
.replace(" ", "_")
|
406 |
+
.replace("(", "")
|
407 |
+
.replace(")", "")
|
408 |
+
.replace("_recall", "_recall_binary")
|
409 |
+
.replace("_precision", "_precision_binary")
|
410 |
+
for x in selected_columns
|
411 |
+
]
|
412 |
|
413 |
# Log the actual columns we have
|
414 |
logger.info(f"Main dataframe columns: {list(main_df.columns)}")
|
415 |
|
416 |
# Apply filters to each dataframe
|
417 |
+
filtered_main_df = search_filter_leaderboard(
|
418 |
+
main_df, search_query, model_types, version
|
419 |
+
)
|
420 |
filtered_category_dfs = [
|
421 |
search_filter_leaderboard(df, search_query, model_types, version)
|
422 |
for df in category_dfs
|
|
|
428 |
# Filter selected columns to only those available in the data
|
429 |
if selected_columns:
|
430 |
# Convert display names to internal names first
|
431 |
+
internal_selected_columns = [
|
432 |
+
x.lower()
|
433 |
+
.replace(" ", "_")
|
434 |
+
.replace("(", "")
|
435 |
+
.replace(")", "")
|
436 |
+
.replace("_recall", "_recall_binary")
|
437 |
+
.replace("_precision", "_precision_binary")
|
438 |
+
for x in selected_columns
|
439 |
+
]
|
440 |
+
valid_selected_columns = [
|
441 |
+
col for col in internal_selected_columns if col in available_columns
|
442 |
+
]
|
443 |
+
if not valid_selected_columns and "model_name" in available_columns:
|
444 |
# Fallback if conversion/filtering leads to empty selection
|
445 |
+
valid_selected_columns = ["model_name"] + [
|
446 |
+
col
|
447 |
+
for col in get_default_visible_columns()
|
448 |
+
if col in available_columns
|
449 |
+
]
|
450 |
else:
|
451 |
# If no columns were selected in the dropdown, use default visible columns that exist
|
452 |
+
valid_selected_columns = [
|
453 |
+
col for col in get_default_visible_columns() if col in available_columns
|
454 |
+
]
|
455 |
|
456 |
# Initialize dataframes for display with valid selected columns
|
457 |
main_dataframe = init_leaderboard(filtered_main_df, valid_selected_columns)
|
|
|
460 |
category_dataframes = []
|
461 |
for df in filtered_category_dfs:
|
462 |
df_columns = list(df.columns)
|
463 |
+
df_valid_columns = [
|
464 |
+
col for col in valid_selected_columns if col in df_columns
|
465 |
+
]
|
466 |
+
if not df_valid_columns and "model_name" in df_columns:
|
467 |
+
df_valid_columns = ["model_name"] + get_default_visible_columns()
|
468 |
category_dataframes.append(init_leaderboard(df, df_valid_columns))
|
469 |
|
470 |
return main_dataframe, *category_dataframes
|
|
|
472 |
except Exception as e:
|
473 |
logger.error(f"Error in refresh with filters: {e}")
|
474 |
# Return the current leaderboards on error
|
475 |
+
return leaderboard, *[
|
476 |
+
tab.children[0] for tab in category_tabs.children[1 : len(CATEGORIES) + 1]
|
477 |
+
]
|
478 |
|
479 |
|
480 |
def submit_results(
|
|
|
487 |
mode: str,
|
488 |
submission_file: tempfile._TemporaryFileWrapper,
|
489 |
version: str,
|
490 |
+
guard_model_type: GuardModelType,
|
491 |
):
|
492 |
"""
|
493 |
Handle submission of results with model metadata.
|
|
|
517 |
"model_type": model_type,
|
518 |
"mode": mode,
|
519 |
"version": version,
|
520 |
+
"guard_model_type": guard_model_type,
|
521 |
}
|
522 |
|
523 |
# Process the submission
|
|
|
526 |
# Refresh the leaderboard data
|
527 |
global LEADERBOARD_DF
|
528 |
try:
|
529 |
+
logger.info(
|
530 |
+
f"Refreshing leaderboard data after submission for version {version}..."
|
531 |
+
)
|
532 |
LEADERBOARD_DF = get_leaderboard_df(version=version)
|
533 |
logger.info("Refreshed leaderboard data after submission")
|
534 |
except Exception as e:
|
|
|
545 |
logger.info(f"Performing scheduled refresh of leaderboard data...")
|
546 |
# Get new data
|
547 |
main_df = get_leaderboard_df(version=version)
|
548 |
+
category_dfs = [
|
549 |
+
get_category_leaderboard_df(category, version=version)
|
550 |
+
for category in CATEGORIES
|
551 |
+
]
|
552 |
|
553 |
# For gr.Dataframe, we return the actual dataframes
|
554 |
return main_df, *category_dfs
|
|
|
564 |
"""
|
565 |
try:
|
566 |
new_df = get_leaderboard_df(version=version)
|
567 |
+
category_dfs = [
|
568 |
+
get_category_leaderboard_df(category, version=version)
|
569 |
+
for category in CATEGORIES
|
570 |
+
]
|
571 |
return new_df, *category_dfs
|
572 |
except Exception as e:
|
573 |
logger.error(f"Error updating leaderboards for version {version}: {e}")
|
574 |
return None, *[None for _ in CATEGORIES]
|
575 |
|
576 |
|
577 |
+
def create_performance_plot(
|
578 |
+
selected_models, category, metric="f1_binary", version=CURRENT_VERSION
|
579 |
+
):
|
580 |
"""
|
581 |
Create a radar plot comparing model performance for selected models.
|
582 |
"""
|
|
|
589 |
return go.Figure()
|
590 |
|
591 |
# Filter for selected models
|
592 |
+
df = df[df["model_name"].isin(selected_models)]
|
593 |
|
594 |
# Get the relevant metric columns
|
595 |
metric_cols = [col for col in df.columns if metric in col]
|
|
|
598 |
fig = go.Figure()
|
599 |
|
600 |
# Custom colors for different models
|
601 |
+
colors = [
|
602 |
+
"#8FCCCC",
|
603 |
+
"#C2A4B6",
|
604 |
+
"#98B4A6",
|
605 |
+
"#B68F7C",
|
606 |
+
] # Pale Cyan, Pale Pink, Pale Green, Pale Orange
|
607 |
|
608 |
# Add traces for each model
|
609 |
for idx, model in enumerate(selected_models):
|
610 |
+
model_data = df[df["model_name"] == model]
|
611 |
if not model_data.empty:
|
612 |
values = model_data[metric_cols].values[0].tolist()
|
613 |
# Add the first value again at the end to complete the polygon
|
614 |
values = values + [values[0]]
|
615 |
|
616 |
# Clean up test type names
|
617 |
+
categories = [col.replace(f"_{metric}", "") for col in metric_cols]
|
618 |
# Add the first category again at the end to complete the polygon
|
619 |
categories = categories + [categories[0]]
|
620 |
|
621 |
+
fig.add_trace(
|
622 |
+
go.Scatterpolar(
|
623 |
+
r=values,
|
624 |
+
theta=categories,
|
625 |
+
name=model,
|
626 |
+
line_color=colors[idx % len(colors)],
|
627 |
+
fill="toself",
|
628 |
+
)
|
629 |
+
)
|
630 |
|
631 |
# Update layout with all settings at once
|
632 |
fig.update_layout(
|
633 |
+
paper_bgcolor="#000000",
|
634 |
+
plot_bgcolor="#000000",
|
635 |
+
font={"color": "#ffffff"},
|
636 |
title={
|
637 |
+
"text": f"{category} - {metric.upper()} Score Comparison",
|
638 |
+
"font": {"color": "#ffffff", "size": 24},
|
639 |
},
|
640 |
polar=dict(
|
641 |
+
bgcolor="#000000",
|
642 |
radialaxis=dict(
|
643 |
visible=True,
|
644 |
range=[0, 1],
|
645 |
+
gridcolor="#333333",
|
646 |
+
linecolor="#333333",
|
647 |
+
tickfont={"color": "#ffffff"},
|
648 |
),
|
649 |
angularaxis=dict(
|
650 |
+
gridcolor="#333333",
|
651 |
+
linecolor="#333333",
|
652 |
+
tickfont={"color": "#ffffff"},
|
653 |
+
),
|
654 |
),
|
655 |
height=600,
|
656 |
showlegend=True,
|
|
|
659 |
y=0.99,
|
660 |
xanchor="right",
|
661 |
x=0.99,
|
662 |
+
bgcolor="rgba(0,0,0,0.5)",
|
663 |
+
font={"color": "#ffffff"},
|
664 |
+
),
|
665 |
)
|
666 |
|
667 |
return fig
|
|
|
674 |
df = get_leaderboard_df(version=version)
|
675 |
if df.empty:
|
676 |
return []
|
677 |
+
return sorted(df["model_name"].unique().tolist())
|
678 |
|
679 |
|
680 |
def update_visualization(selected_models, selected_category, selected_metric, version):
|
|
|
683 |
"""
|
684 |
if not selected_models:
|
685 |
return go.Figure()
|
686 |
+
return create_performance_plot(
|
687 |
+
selected_models, selected_category, selected_metric, version
|
688 |
+
)
|
689 |
|
690 |
|
691 |
# Create Gradio app
|
692 |
demo = gr.Blocks(css=custom_css, theme=custom_theme)
|
693 |
|
694 |
CATEGORY_DISPLAY_MAP = {
|
695 |
+
"Political Corruption and Legal Evasion": "Corruption & Legal Evasion",
|
696 |
+
"Financial Fraud and Unethical Business": "Financial Fraud",
|
697 |
+
"AI Manipulation and Jailbreaking": "AI Jailbreaking",
|
698 |
+
"Child Exploitation and Abuse": "Child Exploitation",
|
699 |
+
"Hate Speech, Extremism, and Discrimination": "Hate Speech",
|
700 |
+
"Labor Exploitation and Human Trafficking": "Labor Exploitation",
|
701 |
+
"Manipulation, Deception, and Misinformation": "Misinformation",
|
702 |
+
"Environmental and Industrial Harm": "Environmental Harm",
|
703 |
+
"Academic Dishonesty and Cheating": "Academic Dishonesty",
|
704 |
+
"Self–Harm and Suicidal Ideation": "Self-Harm",
|
705 |
+
"Animal Cruelty and Exploitation": "Animal Harm",
|
706 |
+
"Criminal, Violent, and Terrorist Activity": "Crime & Violence",
|
707 |
+
"Drug– and Substance–Related Activities": "Drug Use",
|
708 |
+
"Sexual Content and Violence": "Sexual Content",
|
709 |
+
"Weapon, Explosives, and Hazardous Materials": "Weapons & Harmful Materials",
|
710 |
+
"Cybercrime, Hacking, and Digital Exploits": "Cybercrime",
|
711 |
+
"Creative Content Involving Illicit Themes": "Illicit Creative",
|
712 |
+
"Safe Prompts": "Safe Prompts",
|
713 |
}
|
714 |
# Create reverse mapping for lookups
|
715 |
CATEGORY_REVERSE_MAP = {v: k for k, v in CATEGORY_DISPLAY_MAP.items()}
|
|
|
722 |
with gr.Row():
|
723 |
tabs = gr.Tabs(elem_classes="tab-buttons")
|
724 |
|
|
|
725 |
with tabs:
|
726 |
with gr.TabItem("Leaderboard", elem_id="guardbench-leaderboard-tab", id=0):
|
727 |
with gr.Row():
|
|
|
732 |
interactive=True,
|
733 |
elem_classes="version-selector",
|
734 |
scale=1,
|
735 |
+
visible=False,
|
736 |
)
|
737 |
|
738 |
with gr.Row():
|
|
|
740 |
placeholder="Search by models (use ; to split)",
|
741 |
label="Search",
|
742 |
elem_id="search-bar",
|
743 |
+
scale=2,
|
744 |
)
|
745 |
model_type_filter = gr.Dropdown(
|
746 |
+
choices=[
|
747 |
+
t.to_str(" : ") for t in ModelType if t != ModelType.Unknown
|
748 |
+
],
|
749 |
label="Access Type",
|
750 |
multiselect=True,
|
751 |
value=[],
|
752 |
interactive=True,
|
753 |
+
scale=1,
|
754 |
)
|
755 |
column_selector = gr.Dropdown(
|
756 |
choices=get_all_column_choices(),
|
|
|
758 |
multiselect=True,
|
759 |
value=get_initial_columns(),
|
760 |
interactive=True,
|
761 |
+
scale=1,
|
762 |
)
|
763 |
with gr.Row():
|
764 |
+
refresh_button = gr.Button(
|
765 |
+
"Refresh", scale=0, elem_id="refresh-button"
|
766 |
+
)
|
767 |
|
768 |
# Create tabs for each category
|
769 |
with gr.Tabs(elem_classes="category-tabs") as category_tabs:
|
|
|
776 |
display_name = CATEGORY_DISPLAY_MAP.get(category, category)
|
777 |
elem_id = f"category-{display_name.lower().replace(' ', '-').replace('&', 'and')}-tab"
|
778 |
with gr.TabItem(display_name, elem_id=elem_id):
|
779 |
+
category_df = get_category_leaderboard_df(
|
780 |
+
category, version=CURRENT_VERSION
|
781 |
+
)
|
782 |
category_leaderboard = init_leaderboard(category_df)
|
783 |
|
784 |
# Connect search and filter inputs to update function
|
785 |
+
def update_with_search_filters(
|
786 |
+
version=CURRENT_VERSION,
|
787 |
+
search_query="",
|
788 |
+
model_types=None,
|
789 |
+
selected_columns=None,
|
790 |
+
):
|
791 |
"""
|
792 |
Update the leaderboards with search and filter settings.
|
793 |
"""
|
794 |
+
return refresh_data_with_filters(
|
795 |
+
version, search_query, model_types, selected_columns
|
796 |
+
)
|
797 |
|
798 |
# Refresh button functionality
|
799 |
+
def refresh_and_update(
|
800 |
+
version, search_query, model_types, selected_columns
|
801 |
+
):
|
802 |
"""
|
803 |
Refresh data, update LEADERBOARD_DF, and return updated components.
|
804 |
"""
|
805 |
global LEADERBOARD_DF
|
806 |
main_df = get_leaderboard_df(version=version)
|
807 |
LEADERBOARD_DF = main_df # Update the global DataFrame
|
808 |
+
return refresh_data_with_filters(
|
809 |
+
version, search_query, model_types, selected_columns
|
810 |
+
)
|
811 |
|
812 |
refresh_button.click(
|
813 |
fn=refresh_and_update,
|
814 |
+
inputs=[
|
815 |
+
version_selector,
|
816 |
+
search_input,
|
817 |
+
model_type_filter,
|
818 |
+
column_selector,
|
819 |
+
],
|
820 |
+
outputs=[leaderboard]
|
821 |
+
+ [
|
822 |
+
category_tabs.children[i].children[0]
|
823 |
+
for i in range(1, len(CATEGORIES) + 1)
|
824 |
+
],
|
825 |
+
)
|
826 |
# Search input functionality
|
827 |
search_input.change(
|
828 |
fn=refresh_data_with_filters,
|
829 |
+
inputs=[
|
830 |
+
version_selector,
|
831 |
+
search_input,
|
832 |
+
model_type_filter,
|
833 |
+
column_selector,
|
834 |
+
],
|
835 |
+
outputs=[leaderboard]
|
836 |
+
+ [
|
837 |
+
category_tabs.children[i].children[0]
|
838 |
+
for i in range(1, len(CATEGORIES) + 1)
|
839 |
+
],
|
840 |
)
|
841 |
|
842 |
# Model type filter functionality
|
843 |
model_type_filter.change(
|
844 |
fn=refresh_data_with_filters,
|
845 |
+
inputs=[
|
846 |
+
version_selector,
|
847 |
+
search_input,
|
848 |
+
model_type_filter,
|
849 |
+
column_selector,
|
850 |
+
],
|
851 |
+
outputs=[leaderboard]
|
852 |
+
+ [
|
853 |
+
category_tabs.children[i].children[0]
|
854 |
+
for i in range(1, len(CATEGORIES) + 1)
|
855 |
+
],
|
856 |
)
|
857 |
|
858 |
# Version selector functionality
|
859 |
version_selector.change(
|
860 |
fn=refresh_data_with_filters,
|
861 |
+
inputs=[
|
862 |
+
version_selector,
|
863 |
+
search_input,
|
864 |
+
model_type_filter,
|
865 |
+
column_selector,
|
866 |
+
],
|
867 |
+
outputs=[leaderboard]
|
868 |
+
+ [
|
869 |
+
category_tabs.children[i].children[0]
|
870 |
+
for i in range(1, len(CATEGORIES) + 1)
|
871 |
+
],
|
872 |
)
|
873 |
|
874 |
# Update the update_columns function to handle updating all tabs at once
|
|
|
885 |
# If no columns are selected, use default visible columns
|
886 |
if not selected_columns or len(selected_columns) == 0:
|
887 |
selected_columns = get_default_visible_columns()
|
888 |
+
logger.info(
|
889 |
+
f"No columns selected, using defaults: {selected_columns}"
|
890 |
+
)
|
891 |
|
892 |
# Convert display names to internal names
|
893 |
+
internal_selected_columns = [
|
894 |
+
x.lower()
|
895 |
+
.replace(" ", "_")
|
896 |
+
.replace("(", "")
|
897 |
+
.replace(")", "")
|
898 |
+
.replace("_recall", "_recall_binary")
|
899 |
+
.replace("_precision", "_precision_binary")
|
900 |
+
for x in selected_columns
|
901 |
+
]
|
902 |
|
903 |
# Get the current data with ALL columns preserved
|
904 |
main_df = get_leaderboard_df(version=version_selector.value)
|
905 |
|
906 |
# Get category dataframes with ALL columns preserved
|
907 |
+
category_dfs = [
|
908 |
+
get_category_leaderboard_df(
|
909 |
+
category, version=version_selector.value
|
910 |
+
)
|
911 |
+
for category in CATEGORIES
|
912 |
+
]
|
913 |
|
914 |
# Log columns for debugging
|
915 |
logger.info(f"Main dataframe columns: {list(main_df.columns)}")
|
916 |
+
logger.info(
|
917 |
+
f"Selected columns (internal): {internal_selected_columns}"
|
918 |
+
)
|
919 |
|
920 |
# IMPORTANT: Make sure model_name is always included
|
921 |
+
if (
|
922 |
+
"model_name" in main_df.columns
|
923 |
+
and "model_name" not in internal_selected_columns
|
924 |
+
):
|
925 |
+
internal_selected_columns = [
|
926 |
+
"model_name"
|
927 |
+
] + internal_selected_columns
|
928 |
|
929 |
# Initialize the main leaderboard with the selected columns
|
930 |
# We're passing the internal_selected_columns directly to preserve the selection
|
931 |
+
main_leaderboard = init_leaderboard(
|
932 |
+
main_df, internal_selected_columns
|
933 |
+
)
|
934 |
|
935 |
# Initialize category dataframes with the same selected columns
|
936 |
# This ensures consistency across all tabs
|
|
|
938 |
for df in category_dfs:
|
939 |
# Use the same selected columns for each category
|
940 |
# init_leaderboard will automatically handle filtering to columns that exist
|
941 |
+
category_leaderboards.append(
|
942 |
+
init_leaderboard(df, internal_selected_columns)
|
943 |
+
)
|
944 |
|
945 |
return main_leaderboard, *category_leaderboards
|
946 |
|
947 |
except Exception as e:
|
948 |
logger.error(f"Error updating columns: {e}")
|
949 |
import traceback
|
950 |
+
|
951 |
logger.error(traceback.format_exc())
|
952 |
+
return leaderboard, *[
|
953 |
+
tab.children[0]
|
954 |
+
for tab in category_tabs.children[1 : len(CATEGORIES) + 1]
|
955 |
+
]
|
956 |
|
957 |
# Connect column selector to update function
|
958 |
column_selector.change(
|
959 |
fn=update_columns,
|
960 |
inputs=[column_selector],
|
961 |
+
outputs=[leaderboard]
|
962 |
+
+ [
|
963 |
+
category_tabs.children[i].children[0]
|
964 |
+
for i in range(1, len(CATEGORIES) + 1)
|
965 |
+
],
|
966 |
)
|
967 |
|
|
|
968 |
with gr.TabItem("Visualize", elem_id="guardbench-viz-tab", id=1):
|
969 |
with gr.Row():
|
970 |
with gr.Column():
|
|
|
973 |
label="Benchmark Version",
|
974 |
value=CURRENT_VERSION,
|
975 |
interactive=True,
|
976 |
+
visible=False,
|
977 |
)
|
978 |
+
|
979 |
# New: Mode selector
|
980 |
def get_model_mode_choices(version):
|
981 |
df = get_leaderboard_df(version=version)
|
982 |
if df.empty:
|
983 |
return []
|
984 |
# Return list of tuples (model_name, mode)
|
985 |
+
return sorted(
|
986 |
+
[
|
987 |
+
f"{row['model_name']} [{row['mode']}]"
|
988 |
+
for _, row in df.drop_duplicates(
|
989 |
+
subset=["model_name", "mode"]
|
990 |
+
).iterrows()
|
991 |
+
]
|
992 |
+
)
|
993 |
|
994 |
model_mode_selector = gr.Dropdown(
|
995 |
choices=get_model_mode_choices(CURRENT_VERSION),
|
996 |
label="Select Model(s) [Mode] to Compare",
|
997 |
multiselect=True,
|
998 |
+
interactive=True,
|
999 |
)
|
1000 |
with gr.Column():
|
1001 |
# Add Overall Performance to categories, use display names
|
1002 |
+
viz_categories_display = ["All Results"] + [
|
1003 |
+
CATEGORY_DISPLAY_MAP.get(cat, cat) for cat in CATEGORIES
|
1004 |
+
]
|
1005 |
category_selector = gr.Dropdown(
|
1006 |
choices=viz_categories_display,
|
1007 |
label="Select Category",
|
1008 |
value=viz_categories_display[0],
|
1009 |
+
interactive=True,
|
1010 |
)
|
1011 |
metric_selector = gr.Dropdown(
|
1012 |
+
choices=[
|
1013 |
+
"accuracy",
|
1014 |
+
"f1_binary",
|
1015 |
+
"precision_binary",
|
1016 |
+
"recall_binary",
|
1017 |
+
"error_ratio",
|
1018 |
+
],
|
1019 |
label="Select Metric",
|
1020 |
value="accuracy",
|
1021 |
+
interactive=True,
|
1022 |
)
|
1023 |
|
1024 |
plot_output = gr.Plot()
|
1025 |
|
1026 |
# Update visualization when any selector changes
|
1027 |
+
def update_visualization_with_mode(
|
1028 |
+
selected_model_modes, selected_category, selected_metric, version
|
1029 |
+
):
|
1030 |
if not selected_model_modes:
|
1031 |
return go.Figure()
|
1032 |
+
df = (
|
1033 |
+
get_leaderboard_df(version=version)
|
1034 |
+
if selected_category == "All Results"
|
1035 |
+
else get_category_leaderboard_df(
|
1036 |
+
selected_category, version=version
|
1037 |
+
)
|
1038 |
+
)
|
1039 |
if df.empty:
|
1040 |
return go.Figure()
|
1041 |
# Parse selected_model_modes into model_name and mode
|
1042 |
selected_pairs = [s.rsplit(" [", 1) for s in selected_model_modes]
|
1043 |
+
selected_pairs = [
|
1044 |
+
(name.strip(), mode.strip("] "))
|
1045 |
+
for name, mode in selected_pairs
|
1046 |
+
]
|
1047 |
+
mask = df.apply(
|
1048 |
+
lambda row: (row["model_name"], str(row["mode"]))
|
1049 |
+
in selected_pairs,
|
1050 |
+
axis=1,
|
1051 |
+
)
|
1052 |
filtered_df = df[mask]
|
1053 |
+
metric_cols = [
|
1054 |
+
col for col in filtered_df.columns if selected_metric in col
|
1055 |
+
]
|
1056 |
fig = go.Figure()
|
1057 |
+
colors = ["#8FCCCC", "#C2A4B6", "#98B4A6", "#B68F7C"]
|
1058 |
for idx, (model_name, mode) in enumerate(selected_pairs):
|
1059 |
+
model_data = filtered_df[
|
1060 |
+
(filtered_df["model_name"] == model_name)
|
1061 |
+
& (filtered_df["mode"] == mode)
|
1062 |
+
]
|
1063 |
if not model_data.empty:
|
1064 |
values = model_data[metric_cols].values[0].tolist()
|
1065 |
values = values + [values[0]]
|
1066 |
+
categories = [
|
1067 |
+
col.replace(f"_{selected_metric}", "")
|
1068 |
+
for col in metric_cols
|
1069 |
+
]
|
1070 |
categories = categories + [categories[0]]
|
1071 |
+
fig.add_trace(
|
1072 |
+
go.Scatterpolar(
|
1073 |
+
r=values,
|
1074 |
+
theta=categories,
|
1075 |
+
name=f"{model_name} [{mode}]",
|
1076 |
+
line_color=colors[idx % len(colors)],
|
1077 |
+
fill="toself",
|
1078 |
+
)
|
1079 |
+
)
|
1080 |
fig.update_layout(
|
1081 |
+
paper_bgcolor="#000000",
|
1082 |
+
plot_bgcolor="#000000",
|
1083 |
+
font={"color": "#ffffff"},
|
1084 |
title={
|
1085 |
+
"text": f"{selected_category} - {selected_metric.upper()} Score Comparison",
|
1086 |
+
"font": {"color": "#ffffff", "size": 24},
|
1087 |
},
|
1088 |
polar=dict(
|
1089 |
+
bgcolor="#000000",
|
1090 |
radialaxis=dict(
|
1091 |
visible=True,
|
1092 |
range=[0, 1],
|
1093 |
+
gridcolor="#333333",
|
1094 |
+
linecolor="#333333",
|
1095 |
+
tickfont={"color": "#ffffff"},
|
1096 |
),
|
1097 |
angularaxis=dict(
|
1098 |
+
gridcolor="#333333",
|
1099 |
+
linecolor="#333333",
|
1100 |
+
tickfont={"color": "#ffffff"},
|
1101 |
+
),
|
1102 |
),
|
1103 |
height=600,
|
1104 |
showlegend=True,
|
|
|
1107 |
y=0.99,
|
1108 |
xanchor="right",
|
1109 |
x=0.99,
|
1110 |
+
bgcolor="rgba(0,0,0,0.5)",
|
1111 |
+
font={"color": "#ffffff"},
|
1112 |
+
),
|
1113 |
)
|
1114 |
return fig
|
1115 |
|
1116 |
# Connect selectors to update function
|
1117 |
+
for control in [
|
1118 |
+
viz_version_selector,
|
1119 |
+
model_mode_selector,
|
1120 |
+
category_selector,
|
1121 |
+
metric_selector,
|
1122 |
+
]:
|
1123 |
control.change(
|
1124 |
+
fn=lambda smm, sc, s_metric, v: update_visualization_with_mode(
|
1125 |
+
smm, CATEGORY_REVERSE_MAP.get(sc, sc), s_metric, v
|
1126 |
+
),
|
1127 |
+
inputs=[
|
1128 |
+
model_mode_selector,
|
1129 |
+
category_selector,
|
1130 |
+
metric_selector,
|
1131 |
+
viz_version_selector,
|
1132 |
+
],
|
1133 |
+
outputs=plot_output,
|
1134 |
)
|
1135 |
|
1136 |
# Update model_mode_selector choices when version changes
|
1137 |
viz_version_selector.change(
|
1138 |
fn=get_model_mode_choices,
|
1139 |
inputs=[viz_version_selector],
|
1140 |
+
outputs=[model_mode_selector],
|
1141 |
)
|
1142 |
|
1143 |
# with gr.TabItem("About", elem_id="guardbench-about-tab", id=2):
|
|
|
1157 |
value=CURRENT_VERSION,
|
1158 |
interactive=True,
|
1159 |
elem_classes="version-selector",
|
1160 |
+
visible=False,
|
1161 |
)
|
1162 |
|
1163 |
with gr.Row():
|
|
|
1170 |
value=None,
|
1171 |
interactive=True,
|
1172 |
)
|
1173 |
+
revision_name_textbox = gr.Textbox(
|
1174 |
+
label="Revision commit", placeholder="main"
|
1175 |
+
)
|
1176 |
model_type = gr.Dropdown(
|
1177 |
+
choices=[
|
1178 |
+
t.to_str(" : ")
|
1179 |
+
for t in ModelType
|
1180 |
+
if t != ModelType.Unknown
|
1181 |
+
],
|
1182 |
label="Model type",
|
1183 |
multiselect=False,
|
1184 |
value=None,
|
|
|
1194 |
|
1195 |
with gr.Column():
|
1196 |
precision = gr.Dropdown(
|
1197 |
+
choices=[
|
1198 |
+
i.name for i in Precision if i != Precision.Unknown
|
1199 |
+
],
|
1200 |
label="Precision",
|
1201 |
multiselect=False,
|
1202 |
value="float16",
|
|
|
1209 |
value="Original",
|
1210 |
interactive=True,
|
1211 |
)
|
1212 |
+
base_model_name_textbox = gr.Textbox(
|
1213 |
+
label="Base model (for delta or adapter weights)"
|
1214 |
+
)
|
1215 |
|
1216 |
with gr.Row():
|
1217 |
file_input = gr.File(
|
1218 |
+
label="Upload JSONL Results File", file_types=[".jsonl"]
|
|
|
1219 |
)
|
1220 |
|
1221 |
submit_button = gr.Button("Submit Results")
|
|
|
1233 |
mode_selector,
|
1234 |
file_input,
|
1235 |
submission_version_selector,
|
1236 |
+
guard_model_type,
|
1237 |
],
|
1238 |
+
outputs=result_output,
|
1239 |
)
|
1240 |
|
1241 |
# Version selector functionality
|
1242 |
version_selector.change(
|
1243 |
fn=update_leaderboards,
|
1244 |
inputs=[version_selector],
|
1245 |
+
outputs=[leaderboard]
|
1246 |
+
+ [
|
1247 |
+
category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)
|
1248 |
+
],
|
1249 |
+
).then(
|
1250 |
+
lambda version: refresh_data_with_filters(version),
|
1251 |
+
inputs=[version_selector],
|
1252 |
+
outputs=[leaderboard]
|
1253 |
+
+ [
|
1254 |
+
category_tabs.children[i].children[0] for i in range(1, len(CATEGORIES) + 1)
|
1255 |
+
],
|
1256 |
+
)
|
1257 |
|
1258 |
|
1259 |
# Set up the scheduler to refresh data periodically
|
1260 |
scheduler = BackgroundScheduler()
|
1261 |
+
scheduler.add_job(refresh_data, "interval", minutes=30)
|
1262 |
scheduler.start()
|
1263 |
|
1264 |
# Launch the app
|
1265 |
if __name__ == "__main__":
|
|
|
1266 |
demo.launch()
|