File size: 10,135 Bytes
882f6e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

import copy
import json
from typing import Dict, Union

import gradio as gr
import numpy as np
import torch
import torchaudio
from attrdict import AttrDict
from diffusion.respace import SpacedDiffusion
from model.cfg_sampler import ClassifierFreeSampleModel
from model.diffusion import FiLMTransformer
from utils.misc import fixseed
from utils.model_util import create_model_and_diffusion, load_model
from visualize.render_codes import BodyRenderer


class GradioModel:
    def __init__(self, face_args, pose_args) -> None:
        self.face_model, self.face_diffusion, self.device = self._setup_model(
            face_args, "checkpoints/diffusion/c1_face/model000155000.pt"
        )
        self.pose_model, self.pose_diffusion, _ = self._setup_model(
            pose_args, "checkpoints/diffusion/c1_pose/model000340000.pt"
        )
        # load standardization stuff
        stats = torch.load("dataset/PXB184/data_stats.pth")
        stats["pose_mean"] = stats["pose_mean"].reshape(-1)
        stats["pose_std"] = stats["pose_std"].reshape(-1)
        self.stats = stats
        # set up renderer
        config_base = f"./checkpoints/ca_body/data/PXB184"
        self.body_renderer = BodyRenderer(
            config_base=config_base,
            render_rgb=True,
        )

    def _setup_model(
        self,
        args_path: str,
        model_path: str,
    ) -> (Union[FiLMTransformer, ClassifierFreeSampleModel], SpacedDiffusion):
        with open(args_path) as f:
            args = json.load(f)
        args = AttrDict(args)
        args.device = "cuda:0" if torch.cuda.is_available() else "cpu"
        print("running on...", args.device)
        args.model_path = model_path
        args.output_dir = "/tmp/gradio/"
        args.timestep_respacing = "ddim100"
        if args.data_format == "pose":
            args.resume_trans = "checkpoints/guide/c1_pose/checkpoints/iter-0100000.pt"

        ## create model
        model, diffusion = create_model_and_diffusion(args, split_type="test")
        print(f"Loading checkpoints from [{args.model_path}]...")
        state_dict = torch.load(args.model_path, map_location=args.device)
        load_model(model, state_dict)
        model = ClassifierFreeSampleModel(model)
        model.eval()
        model.to(args.device)
        return model, diffusion, args.device

    def _replace_keyframes(
        self,
        model_kwargs: Dict[str, Dict[str, torch.Tensor]],
        B: int,
        T: int,
        top_p: float = 0.97,
    ) -> torch.Tensor:
        with torch.no_grad():
            tokens = self.pose_model.transformer.generate(
                model_kwargs["y"]["audio"],
                T,
                layers=self.pose_model.tokenizer.residual_depth,
                n_sequences=B,
                top_p=top_p,
            )
        tokens = tokens.reshape((B, -1, self.pose_model.tokenizer.residual_depth))
        pred = self.pose_model.tokenizer.decode(tokens).detach()
        return pred

    def _run_single_diffusion(
        self,
        model_kwargs: Dict[str, Dict[str, torch.Tensor]],
        diffusion: SpacedDiffusion,
        model: Union[FiLMTransformer, ClassifierFreeSampleModel],
        curr_seq_length: int,
        num_repetitions: int = 1,
    ) -> (torch.Tensor,):
        sample_fn = diffusion.ddim_sample_loop
        with torch.no_grad():
            sample = sample_fn(
                model,
                (num_repetitions, model.nfeats, 1, curr_seq_length),
                clip_denoised=False,
                model_kwargs=model_kwargs,
                init_image=None,
                progress=True,
                dump_steps=None,
                noise=None,
                const_noise=False,
            )
        return sample

    def generate_sequences(
        self,
        model_kwargs: Dict[str, Dict[str, torch.Tensor]],
        data_format: str,
        curr_seq_length: int,
        num_repetitions: int = 5,
        guidance_param: float = 10.0,
        top_p: float = 0.97,
        # batch_size: int = 1,
    ) -> Dict[str, np.ndarray]:
        if data_format == "pose":
            model = self.pose_model
            diffusion = self.pose_diffusion
        else:
            model = self.face_model
            diffusion = self.face_diffusion

        all_motions = []
        model_kwargs["y"]["scale"] = torch.ones(num_repetitions) * guidance_param
        model_kwargs["y"] = {
            key: val.to(self.device) if torch.is_tensor(val) else val
            for key, val in model_kwargs["y"].items()
        }
        if data_format == "pose":
            model_kwargs["y"]["mask"] = (
                torch.ones((num_repetitions, 1, 1, curr_seq_length))
                .to(self.device)
                .bool()
            )
            model_kwargs["y"]["keyframes"] = self._replace_keyframes(
                model_kwargs,
                num_repetitions,
                int(curr_seq_length / 30),
                top_p=top_p,
            )
        sample = self._run_single_diffusion(
            model_kwargs, diffusion, model, curr_seq_length, num_repetitions
        )
        all_motions.append(sample.cpu().numpy())
        print(f"created {len(all_motions) * num_repetitions} samples")
        return np.concatenate(all_motions, axis=0)


def generate_results(audio: np.ndarray, num_repetitions: int, top_p: float):
    if audio is None:
        raise gr.Error("Please record audio to start")
    sr, y = audio
    # set to mono and perform resampling
    y = torch.Tensor(y)
    if y.dim() == 2:
        dim = 0 if y.shape[0] == 2 else 1
        y = torch.mean(y, dim=dim)
    y = torchaudio.functional.resample(torch.Tensor(y), orig_freq=sr, new_freq=48_000)
    sr = 48_000
    # make it so that it is 4 seconds long
    if len(y) < (sr * 4):
        raise gr.Error("Please record at least 4 second of audio")
    if num_repetitions is None or num_repetitions <= 0 or num_repetitions > 10:
        raise gr.Error(
            f"Invalid number of samples: {num_repetitions}. Please specify a number between 1-10"
        )
    cutoff = int(len(y) / (sr * 4))
    y = y[: cutoff * sr * 4]
    curr_seq_length = int(len(y) / sr) * 30
    # create model_kwargs
    model_kwargs = {"y": {}}
    dual_audio = np.random.normal(0, 0.001, (1, len(y), 2))
    dual_audio[:, :, 0] = y / max(y)
    dual_audio = (dual_audio - gradio_model.stats["audio_mean"]) / gradio_model.stats[
        "audio_std_flat"
    ]
    model_kwargs["y"]["audio"] = (
        torch.Tensor(dual_audio).float().tile(num_repetitions, 1, 1)
    )
    face_results = (
        gradio_model.generate_sequences(
            model_kwargs, "face", curr_seq_length, num_repetitions=int(num_repetitions)
        )
        .squeeze(2)
        .transpose(0, 2, 1)
    )
    face_results = (
        face_results * gradio_model.stats["code_std"] + gradio_model.stats["code_mean"]
    )
    pose_results = (
        gradio_model.generate_sequences(
            model_kwargs,
            "pose",
            curr_seq_length,
            num_repetitions=int(num_repetitions),
            guidance_param=2.0,
            top_p=top_p,
        )
        .squeeze(2)
        .transpose(0, 2, 1)
    )
    pose_results = (
        pose_results * gradio_model.stats["pose_std"] + gradio_model.stats["pose_mean"]
    )
    dual_audio = (
        dual_audio * gradio_model.stats["audio_std_flat"]
        + gradio_model.stats["audio_mean"]
    )
    return face_results, pose_results, dual_audio[0].transpose(1, 0).astype(np.float32)


def audio_to_avatar(audio: np.ndarray, num_repetitions: int, top_p: float):
    face_results, pose_results, audio = generate_results(audio, num_repetitions, top_p)
    # returns: num_rep x T x 104
    B = len(face_results)
    results = []
    for i in range(B):
        render_data_block = {
            "audio": audio,  # 2 x T
            "body_motion": pose_results[i, ...],  # T x 104
            "face_motion": face_results[i, ...],  # T x 256
        }
        gradio_model.body_renderer.render_full_video(
            render_data_block, f"/tmp/sample{i}", audio_sr=48_000
        )
        results += [gr.Video(value=f"/tmp/sample{i}_pred.mp4", visible=True)]
    results += [gr.Video(visible=False) for _ in range(B, 10)]
    return results


gradio_model = GradioModel(
    face_args="./checkpoints/diffusion/c1_face/args.json",
    pose_args="./checkpoints/diffusion/c1_pose/args.json",
)
demo = gr.Interface(
    audio_to_avatar,  # function
    [
        gr.Audio(sources=["microphone"]),
        gr.Number(
            value=3,
            label="Number of Samples (default = 3)",
            precision=0,
            minimum=1,
            maximum=10,
        ),
        gr.Number(
            value=0.97,
            label="Sample Diversity (default = 0.97)",
            precision=None,
            minimum=0.01,
            step=0.01,
            maximum=1.00,
        ),
    ],  # input type
    [gr.Video(format="mp4", visible=True)]
    + [gr.Video(format="mp4", visible=False) for _ in range(9)],  # output type
    title='"From Audio to Photoreal Embodiment: Synthesizing Humans in Conversations" Demo',
    description="You can generate a photorealistic avatar from your voice! <br/>\
        1) Start by recording your audio.  <br/>\
        2) Specify the number of samples to generate.  <br/>\
        3) Specify how diverse you want the samples to be. This tunes the cumulative probability in nucleus sampling: 0.01 = low diversity, 1.0 = high diversity.  <br/>\
        4) Then, sit back and wait for the rendering to happen! This may take a while (e.g. 30 minutes) <br/>\
        5) After, you can view the videos and download the ones you like.  <br/>",
    article="Relevant links: [Project Page](https://people.eecs.berkeley.edu/~evonne_ng/projects/audio2photoreal)",  # TODO: code and arxiv
)

if __name__ == "__main__":
    fixseed(10)
    demo.launch(share=True)