Spaces:
Running
Running
File size: 5,822 Bytes
94f5248 5608218 94f5248 5608218 94f5248 de0a7e9 5608218 de0a7e9 5608218 94f5248 5608218 94f5248 f528f62 148ab33 f528f62 ca32c10 f528f62 148ab33 f528f62 ca32c10 94f5248 db6c19e ca32c10 f528f62 ca32c10 f528f62 148ab33 f528f62 ca32c10 148ab33 de0a7e9 f528f62 ca32c10 f528f62 ca32c10 f528f62 de0a7e9 f528f62 ca32c10 f528f62 ca32c10 148ab33 7e7ba0a 7f53290 94f5248 5608218 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import gradio as gr
import os
from PIL import Image
# Paths to the images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
# Specific values for percentage and complexity
percentage_values = [10, 30, 50, 70, 100]
complexity_values = [16, 32]
# Function to load and display images based on user selection
def display_images(percentage_idx, complexity_idx):
# Map the slider index to the actual value
percentage = percentage_values[percentage_idx]
complexity = complexity_values[complexity_idx]
# Generate the paths to the images
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
# Load images using PIL
raw_image = Image.open(raw_image_path)
embeddings_image = Image.open(embeddings_image_path)
# Return the loaded images
return raw_image, embeddings_image
# Define the beam prediction function (template based)
def beam_prediction(percentage_idx, complexity_idx):
# Add your beam prediction logic here (this is placeholder code)
raw_img, embeddings_img = display_images(percentage_idx, complexity_idx)
return raw_img, embeddings_img
# Define the LoS/NLoS classification function (template based)
def los_nlos_classification(uploaded_file, percentage_idx, complexity_idx):
# Placeholder code for processing the uploaded .py file (can be extended)
# Add your LoS/NLoS classification logic here
raw_img, embeddings_img = display_images(percentage_idx, complexity_idx)
return raw_img, embeddings_img
# Define the Gradio interface
with gr.Blocks(css="""
.vertical-slider input[type=range] {
writing-mode: bt-lr; /* IE */
-webkit-appearance: slider-vertical; /* WebKit */
width: 8px;
height: 200px;
}
.slider-container {
display: inline-block;
margin-right: 50px;
text-align: center;
}
""") as demo:
# Contact Section
gr.Markdown(
"""
## Contact
<div style="display: flex; align-items: center;">
<a target="_blank" href="mailto:[email protected]"><img src="https://img.shields.io/badge/[email protected]?logo=gmail " alt="Email"></a>
<a target="_blank" href="https://telegram.me/wirelessmodel"><img src="https://img.shields.io/badge/[email protected]?logo=telegram " alt="Telegram"></a>
</div>
"""
)
# Tabs for Beam Prediction and LoS/NLoS Classification
with gr.Tab("Beam Prediction Task"):
gr.Markdown("### Beam Prediction Task")
# Sliders for percentage and complexity
with gr.Row():
with gr.Column(elem_id="slider-container"):
gr.Markdown("Percentage of Data for Training")
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
with gr.Column(elem_id="slider-container"):
gr.Markdown("Task Complexity")
complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
# Image outputs (display the images side by side and set a smaller size for the images)
with gr.Row():
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
# Instant image updates when sliders change
percentage_slider_bp.change(fn=beam_prediction, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
complexity_slider_bp.change(fn=beam_prediction, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
with gr.Tab("LoS/NLoS Classification Task"):
gr.Markdown("### LoS/NLoS Classification Task")
# File uploader for uploading .py file
file_input = gr.File(label="Upload .py File", file_types=[".py"])
# Sliders for percentage and complexity
with gr.Row():
with gr.Column(elem_id="slider-container"):
gr.Markdown("Percentage of Data for Training")
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
with gr.Column(elem_id="slider-container"):
gr.Markdown("Task Complexity")
complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
# Image outputs (display the images side by side and set a smaller size for the images)
with gr.Row():
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
# Instant image updates when sliders or file input change
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
# Launch the app
if __name__ == "__main__":
demo.launch()
|