Spaces:
Running
Running
File size: 9,101 Bytes
8f8b054 cacf045 2a77201 340b448 d1b5811 8f8b054 6e72601 469d918 6e72601 8f8b054 2a77201 8f8b054 6e72601 8f8b054 6e72601 8f8b054 e14ecb7 a392854 d1b5811 469d918 d1b5811 469d918 d1b5811 6e72601 469d918 6e72601 469d918 6e72601 469d918 6e72601 469d918 d1b5811 469d918 d1b5811 df7ce72 6e72601 798b3c0 2a77201 469d918 d2d9264 0176215 2587718 469d918 2587718 469d918 6e72601 df7ce72 6e72601 469d918 6e72601 a392854 d1b5811 a392854 d1b5811 6e72601 a392854 d1b5811 469d918 bef8ac3 6e72601 7e7ba0a 0176215 2a77201 df7ce72 6e72601 8f8b054 469d918 d1b5811 8f8b054 d1b5811 8f8b054 d1b5811 8f8b054 6e72601 8f8b054 6e72601 8f8b054 bc8a6bd 8f8b054 bc8a6bd 8f8b054 469d918 8f8b054 469d918 6e72601 469d918 6e72601 8f8b054 469d918 d1b5811 469d918 8f8b054 469d918 6e72601 469d918 6e72601 469d918 d1b5811 8f8b054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
# Specific values for percentage of data for training and task complexity
percentage_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
complexity_values = [16, 32, 64, 128, 256] # Task complexity values
# Custom class to capture print output
class PrintCapture(io.StringIO):
def __init__(self):
super().__init__()
self.output = []
def write(self, txt):
self.output.append(txt)
super().write(txt)
def get_output(self):
return ''.join(self.output)
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx, complexity_idx):
percentage = percentage_values[percentage_idx]
complexity = complexity_values[complexity_idx]
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
raw_image = Image.open(raw_image_path)
embeddings_image = Image.open(embeddings_image_path)
return raw_image, embeddings_image
# Function to dynamically load a Python module from a given file path
def load_module_from_path(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
# Function to split dataset into training and test sets based on user selection
def split_dataset(channels, labels, percentage_idx):
percentage = percentage_values[percentage_idx] / 100
num_samples = channels.shape[0]
train_size = int(num_samples * percentage)
print(f'Number of Training Samples: {train_size}')
indices = np.arange(num_samples)
np.random.shuffle(indices)
train_idx, test_idx = indices[:train_size], indices[train_size:]
train_data, test_data = channels[train_idx], channels[test_idx]
train_labels, test_labels = labels[train_idx], labels[test_idx]
return train_data, test_data, train_labels, test_labels
# Function to classify based on distance to class centroids
def classify_based_on_distance(train_data, train_labels, test_data):
centroid_0 = train_data[train_labels == 0].mean(dim=0)
centroid_1 = train_data[train_labels == 1].mean(dim=0)
predictions = []
for test_point in test_data:
dist_0 = torch.norm(test_point - centroid_0)
dist_1 = torch.norm(test_point - centroid_1)
predictions.append(0 if dist_0 < dist_1 else 1)
return torch.tensor(predictions)
# Function to generate confusion matrix plot
def plot_confusion_matrix(y_true, y_pred, title):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(5, 5))
plt.imshow(cm, cmap='Blues')
plt.title(title)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.colorbar()
plt.xticks([0, 1], labels=[0, 1])
plt.yticks([0, 1], labels=[0, 1])
plt.tight_layout()
plt.savefig(f"{title}.png")
return Image.open(f"{title}.png")
# Store the original working directory when the app starts
original_dir = os.getcwd()
# Function to process the uploaded HDF5 file for LoS/NLoS classification
def process_hdf5_file(uploaded_file, percentage_idx):
capture = PrintCapture()
sys.stdout = capture # Redirect print statements to capture
try:
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
model_repo_dir = "./LWM"
# Step 1: Clone the repository if not already done
if not os.path.exists(model_repo_dir):
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
# Step 2: Change working directory
repo_work_dir = os.path.join(original_dir, model_repo_dir)
if os.path.exists(repo_work_dir):
os.chdir(repo_work_dir)
else:
print(f"Directory {repo_work_dir} does not exist.")
return
# Dynamically load the necessary modules
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
inference_path = os.path.join(os.getcwd(), 'inference.py')
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
inference = load_module_from_path("inference", inference_path)
device = 'cpu'
model = lwm_model.LWM.from_pretrained(device=device)
with h5py.File(uploaded_file.name, 'r') as f:
channels = np.array(f['channels'])
labels = np.array(f['labels'])
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
return output_emb, output_raw, labels
except Exception as e:
return str(e), str(e), capture.get_output()
finally:
os.chdir(original_dir)
sys.stdout = sys.__stdout__
# Function to handle logic based on whether a file is uploaded or not
def los_nlos_classification(file, percentage_idx):
if file is not None:
return process_hdf5_file(file, percentage_idx)
else:
return display_predefined_images(percentage_idx), None
# Define the Gradio interface with thinner sliders
with gr.Blocks(css="""
.slider-container {
text-align: center;
margin-bottom: 20px;
}
.image-row {
justify-content: center;
margin-top: 10px;
}
input[type=range] {
width: 180px;
height: 8px;
}
""") as demo:
# Contact Section
gr.Markdown("""
<div style="text-align: center;">
<a target="_blank" href="https://www.wi-lab.net">
<img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;">
</a>
<a target="_blank" href="mailto:[email protected]" style="margin-left: 10px;">
<img src="https://img.shields.io/badge/[email protected]?logo=gmail" alt="Email">
</a>
</div>
""")
# Tabs for Beam Prediction and LoS/NLoS Classification
with gr.Tab("Beam Prediction Task"):
gr.Markdown("### Beam Prediction Task")
with gr.Row():
with gr.Column(elem_id="slider-container"):
gr.Markdown("Percentage of Data for Training")
percentage_slider_bp = gr.Slider(minimum=0, maximum=9, step=1, value=0, label="Training Data (%)", interactive=True)
with gr.Column(elem_id="slider-container"):
gr.Markdown("Task Complexity")
complexity_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, label="Task Complexity", interactive=True)
with gr.Row(elem_id="image-row"):
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300)
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
with gr.Tab("LoS/NLoS Classification Task"):
gr.Markdown("### LoS/NLoS Classification Task")
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])
with gr.Row():
with gr.Column(elem_id="slider-container"):
gr.Markdown("Percentage of Data for Training")
percentage_slider_los = gr.Slider(minimum=0, maximum=9, step=1, value=0, label="Training Data (%)", interactive=True)
with gr.Row(elem_id="image-row"):
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300)
output_textbox = gr.Textbox(label="Console Output", lines=8, elem_classes="output-box")
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
# Launch the app
if __name__ == "__main__":
demo.launch()
|