Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -611,14 +611,16 @@ with gr.Blocks(css="""
|
|
| 611 |
<h3 style="color: var(--text-primary);">π <b>LoS/NLoS Classification Task</b></h3>
|
| 612 |
<ul style="padding-left: 20px;">
|
| 613 |
<li><b>π― Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight) with very small LWM CLS embeddings.</li>
|
| 614 |
-
<li><b>π Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>
|
| 615 |
<li><b>π‘ Custom Dataset Requirements:</b>
|
| 616 |
<ul>
|
| 617 |
-
<li
|
| 618 |
<li>π·οΈ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
|
| 619 |
</ul>
|
| 620 |
</li>
|
| 621 |
-
<li><b>π Tip</b>: Instructions for organizing your dataset are available at the bottom of the page.</li>
|
|
|
|
|
|
|
| 622 |
<li><b>πΌ No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
|
| 623 |
</ul>
|
| 624 |
</div>
|
|
|
|
| 611 |
<h3 style="color: var(--text-primary);">π <b>LoS/NLoS Classification Task</b></h3>
|
| 612 |
<ul style="padding-left: 20px;">
|
| 613 |
<li><b>π― Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight) with very small LWM CLS embeddings.</li>
|
| 614 |
+
<li><b>π Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>h5</b> format.</li>
|
| 615 |
<li><b>π‘ Custom Dataset Requirements:</b>
|
| 616 |
<ul>
|
| 617 |
+
<li>π <b>channels</b> array: Shape (N,32,32), rows: 32 antennas at BS, columns: 32 antennas at UEs</li>
|
| 618 |
<li>π·οΈ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
|
| 619 |
</ul>
|
| 620 |
</li>
|
| 621 |
+
<li><b>π Tip 1</b>: Instructions for organizing your dataset are available at the bottom of the page.</li>
|
| 622 |
+
<li><b>π Tip 2</b>: As the computations and inference are performed on HuggingFace CPUs, please use small datasets for faster demo experience (say <500 samples). </li>
|
| 623 |
+
<li><b>π Tip 3</b>: Your dataset will be normalized automatically based on outdoor environments. </li>
|
| 624 |
<li><b>πΌ No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
|
| 625 |
</ul>
|
| 626 |
</div>
|