Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -73,6 +73,8 @@ def load_custom_model():
|
|
| 73 |
model.eval()
|
| 74 |
return model
|
| 75 |
|
|
|
|
|
|
|
| 76 |
# Function to process the uploaded .p file and perform inference using the custom model
|
| 77 |
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
| 78 |
capture = PrintCapture()
|
|
@@ -96,40 +98,30 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
| 96 |
print(f"Directory {model_repo_dir} does not exist.")
|
| 97 |
return
|
| 98 |
|
| 99 |
-
# Step 3:
|
| 100 |
-
|
| 101 |
-
sys.path.append(model_repo_dir)
|
| 102 |
-
|
| 103 |
-
# Step 4: Debugging - Print sys.path to ensure the cloned repo is in the path
|
| 104 |
-
print(f"sys.path: {sys.path}")
|
| 105 |
-
|
| 106 |
-
# Ensure the 'LWM' directory is in the path
|
| 107 |
-
lwm_model_dir = os.path.join(os.getcwd(), 'LWM')
|
| 108 |
-
if lwm_model_dir not in sys.path:
|
| 109 |
-
sys.path.append(lwm_model_dir)
|
| 110 |
-
|
| 111 |
-
# Step 5: Verify if lwm_model.py exists in the directory
|
| 112 |
-
lwm_model_path = 'lwm_model.py'
|
| 113 |
if not os.path.exists(lwm_model_path):
|
| 114 |
print(f"Error: lwm_model.py not found at {lwm_model_path}")
|
| 115 |
return f"Error: lwm_model.py not found at {lwm_model_path}"
|
| 116 |
-
else:
|
| 117 |
-
print(f"lwm_model.py found at {lwm_model_path}")
|
| 118 |
|
| 119 |
-
#
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
device = 'cpu'
|
| 122 |
print(f"Loading the LWM model on {device}...")
|
| 123 |
-
model = LWM.from_pretrained(device=device)
|
| 124 |
|
| 125 |
-
# Step
|
| 126 |
from input_preprocess import tokenizer
|
| 127 |
with open(uploaded_file.name, 'rb') as f:
|
| 128 |
manual_data = pickle.load(f)
|
| 129 |
|
| 130 |
preprocessed_chs = tokenizer(manual_data=manual_data)
|
| 131 |
|
| 132 |
-
# Step
|
| 133 |
from inference import lwm_inference, create_raw_dataset
|
| 134 |
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
|
| 135 |
output_raw = create_raw_dataset(preprocessed_chs, device)
|
|
|
|
| 73 |
model.eval()
|
| 74 |
return model
|
| 75 |
|
| 76 |
+
import importlib.util
|
| 77 |
+
|
| 78 |
# Function to process the uploaded .p file and perform inference using the custom model
|
| 79 |
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
| 80 |
capture = PrintCapture()
|
|
|
|
| 98 |
print(f"Directory {model_repo_dir} does not exist.")
|
| 99 |
return
|
| 100 |
|
| 101 |
+
# Step 3: Dynamically import lwm_model.py using importlib
|
| 102 |
+
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
if not os.path.exists(lwm_model_path):
|
| 104 |
print(f"Error: lwm_model.py not found at {lwm_model_path}")
|
| 105 |
return f"Error: lwm_model.py not found at {lwm_model_path}"
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
# Use importlib to dynamically load lwm_model.py
|
| 108 |
+
spec = importlib.util.spec_from_file_location("lwm_model", lwm_model_path)
|
| 109 |
+
lwm_model = importlib.util.module_from_spec(spec)
|
| 110 |
+
spec.loader.exec_module(lwm_model)
|
| 111 |
+
|
| 112 |
+
# Step 4: Load the model from LWM module
|
| 113 |
device = 'cpu'
|
| 114 |
print(f"Loading the LWM model on {device}...")
|
| 115 |
+
model = lwm_model.LWM.from_pretrained(device=device)
|
| 116 |
|
| 117 |
+
# Step 5: Import tokenizer and load data
|
| 118 |
from input_preprocess import tokenizer
|
| 119 |
with open(uploaded_file.name, 'rb') as f:
|
| 120 |
manual_data = pickle.load(f)
|
| 121 |
|
| 122 |
preprocessed_chs = tokenizer(manual_data=manual_data)
|
| 123 |
|
| 124 |
+
# Step 6: Perform inference
|
| 125 |
from inference import lwm_inference, create_raw_dataset
|
| 126 |
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
|
| 127 |
output_raw = create_raw_dataset(preprocessed_chs, device)
|