Sadjad Alikhani commited on
Commit
8138582
·
verified ·
1 Parent(s): 4d63ad9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -26
app.py CHANGED
@@ -14,29 +14,6 @@ import pandas as pd
14
  from sklearn.metrics import f1_score
15
  import seaborn as sns
16
 
17
- # Set a fixed random seed for reproducibility
18
- seed = 42
19
- np.random.seed(seed)
20
- torch.manual_seed(seed) # Ensure PyTorch random seed for CPU
21
-
22
- # If running on GPU, set the seed for CUDA as well
23
- if torch.cuda.is_available():
24
- torch.cuda.manual_seed(seed)
25
- torch.cuda.manual_seed_all(seed)
26
- torch.backends.cudnn.deterministic = True
27
- torch.backends.cudnn.benchmark = False
28
-
29
- # Enable deterministic algorithms in PyTorch (slower, but ensures consistency)
30
- torch.use_deterministic_algorithms(True)
31
-
32
- # Limit the number of threads to prevent non-deterministic results from multithreading
33
- torch.set_num_threads(1)
34
- os.environ['MKL_NUM_THREADS'] = '1'
35
- os.environ['OMP_NUM_THREADS'] = '1'
36
-
37
- # Optional: Use for debugging to ensure intermediate values match across devices
38
- torch.set_printoptions(precision=10)
39
-
40
  #################### BEAM PREDICTION #########################}
41
  def beam_prediction_task(data_percentage, task_complexity):
42
  # Folder naming convention based on input_type, data_percentage, and task_complexity
@@ -438,8 +415,7 @@ def process_hdf5_file(uploaded_file, percentage):
438
  # Step 4: Load the model from lwm_model module
439
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
440
  print(f"Loading the LWM model on {device}...")
441
- model = lwm_model.LWM.from_pretrained(device=device)
442
- model = model.float()
443
  #for name, param in model.state_dict().items():
444
  # print(f"Layer: {name} | Weights: {param}")
445
 
@@ -454,7 +430,7 @@ def process_hdf5_file(uploaded_file, percentage):
454
  #print(preprocessed_chs[0][0][-1]) #CORRECT
455
 
456
  # Step 7: Perform inference using the functions from inference.py
457
- output_emb = inference.lwm_inference(preprocessed_chs, 'cls_emb', model)
458
  output_raw = inference.create_raw_dataset(preprocessed_chs, device)
459
 
460
  print(f"Output Embeddings Shape: {output_emb.shape}")
 
14
  from sklearn.metrics import f1_score
15
  import seaborn as sns
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  #################### BEAM PREDICTION #########################}
18
  def beam_prediction_task(data_percentage, task_complexity):
19
  # Folder naming convention based on input_type, data_percentage, and task_complexity
 
415
  # Step 4: Load the model from lwm_model module
416
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
417
  print(f"Loading the LWM model on {device}...")
418
+ model = lwm_model.LWM.from_pretrained(device=device).float()
 
419
  #for name, param in model.state_dict().items():
420
  # print(f"Layer: {name} | Weights: {param}")
421
 
 
430
  #print(preprocessed_chs[0][0][-1]) #CORRECT
431
 
432
  # Step 7: Perform inference using the functions from inference.py
433
+ output_emb = inference.lwm_inference(preprocessed_chs, 'cls_emb', model, device)
434
  output_raw = inference.create_raw_dataset(preprocessed_chs, device)
435
 
436
  print(f"Output Embeddings Shape: {output_emb.shape}")