Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -82,11 +82,12 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
| 82 |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
| 83 |
model_repo_dir = "./LWM"
|
| 84 |
|
|
|
|
| 85 |
if not os.path.exists(model_repo_dir):
|
| 86 |
print(f"Cloning model repository from {model_repo_url}...")
|
| 87 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
| 88 |
|
| 89 |
-
|
| 90 |
if os.path.exists(model_repo_dir):
|
| 91 |
os.chdir(model_repo_dir)
|
| 92 |
print(f"Changed working directory to {os.getcwd()}")
|
|
@@ -95,30 +96,40 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
| 95 |
print(f"Directory {model_repo_dir} does not exist.")
|
| 96 |
return
|
| 97 |
|
| 98 |
-
# Step
|
| 99 |
if model_repo_dir not in sys.path:
|
| 100 |
sys.path.append(model_repo_dir)
|
| 101 |
-
|
| 102 |
-
#
|
| 103 |
print(f"sys.path: {sys.path}")
|
| 104 |
-
|
| 105 |
-
|
| 106 |
lwm_model_dir = os.path.join(os.getcwd(), 'LWM')
|
| 107 |
if lwm_model_dir not in sys.path:
|
| 108 |
sys.path.append(lwm_model_dir)
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
from lwm_model import LWM
|
| 111 |
device = 'cpu'
|
| 112 |
print(f"Loading the LWM model on {device}...")
|
| 113 |
model = LWM.from_pretrained(device=device)
|
| 114 |
|
|
|
|
| 115 |
from input_preprocess import tokenizer
|
| 116 |
-
|
| 117 |
with open(uploaded_file.name, 'rb') as f:
|
| 118 |
manual_data = pickle.load(f)
|
| 119 |
|
| 120 |
preprocessed_chs = tokenizer(manual_data=manual_data)
|
| 121 |
|
|
|
|
| 122 |
from inference import lwm_inference, create_raw_dataset
|
| 123 |
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
|
| 124 |
output_raw = create_raw_dataset(preprocessed_chs, device)
|
|
|
|
| 82 |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
| 83 |
model_repo_dir = "./LWM"
|
| 84 |
|
| 85 |
+
# Step 1: Clone the repository if not already done
|
| 86 |
if not os.path.exists(model_repo_dir):
|
| 87 |
print(f"Cloning model repository from {model_repo_url}...")
|
| 88 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
| 89 |
|
| 90 |
+
# Step 2: Verify the repository was cloned
|
| 91 |
if os.path.exists(model_repo_dir):
|
| 92 |
os.chdir(model_repo_dir)
|
| 93 |
print(f"Changed working directory to {os.getcwd()}")
|
|
|
|
| 96 |
print(f"Directory {model_repo_dir} does not exist.")
|
| 97 |
return
|
| 98 |
|
| 99 |
+
# Step 3: Add the cloned repo to sys.path for imports
|
| 100 |
if model_repo_dir not in sys.path:
|
| 101 |
sys.path.append(model_repo_dir)
|
| 102 |
+
|
| 103 |
+
# Step 4: Debugging - Print sys.path to ensure the cloned repo is in the path
|
| 104 |
print(f"sys.path: {sys.path}")
|
| 105 |
+
|
| 106 |
+
# Ensure the 'LWM' directory is in the path
|
| 107 |
lwm_model_dir = os.path.join(os.getcwd(), 'LWM')
|
| 108 |
if lwm_model_dir not in sys.path:
|
| 109 |
sys.path.append(lwm_model_dir)
|
| 110 |
+
|
| 111 |
+
# Step 5: Verify if lwm_model.py exists in the directory
|
| 112 |
+
lwm_model_path = os.path.join(lwm_model_dir, 'lwm_model.py')
|
| 113 |
+
if not os.path.exists(lwm_model_path):
|
| 114 |
+
print(f"Error: lwm_model.py not found at {lwm_model_path}")
|
| 115 |
+
return f"Error: lwm_model.py not found at {lwm_model_path}"
|
| 116 |
+
else:
|
| 117 |
+
print(f"lwm_model.py found at {lwm_model_path}")
|
| 118 |
+
|
| 119 |
+
# Step 6: Import lwm_model after ensuring path is set
|
| 120 |
from lwm_model import LWM
|
| 121 |
device = 'cpu'
|
| 122 |
print(f"Loading the LWM model on {device}...")
|
| 123 |
model = LWM.from_pretrained(device=device)
|
| 124 |
|
| 125 |
+
# Step 7: Import tokenizer and load data
|
| 126 |
from input_preprocess import tokenizer
|
|
|
|
| 127 |
with open(uploaded_file.name, 'rb') as f:
|
| 128 |
manual_data = pickle.load(f)
|
| 129 |
|
| 130 |
preprocessed_chs = tokenizer(manual_data=manual_data)
|
| 131 |
|
| 132 |
+
# Step 8: Perform inference
|
| 133 |
from inference import lwm_inference, create_raw_dataset
|
| 134 |
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
|
| 135 |
output_raw = create_raw_dataset(preprocessed_chs, device)
|