Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -561,7 +561,7 @@ with gr.Blocks(css="""
|
|
| 561 |
# Add a conclusion section at the bottom
|
| 562 |
gr.Markdown("""
|
| 563 |
<div class="explanation-box">
|
| 564 |
-
|
| 565 |
</div>
|
| 566 |
""")
|
| 567 |
|
|
@@ -623,7 +623,7 @@ with gr.Blocks(css="""
|
|
| 623 |
# Add a conclusion section at the bottom
|
| 624 |
gr.Markdown("""
|
| 625 |
<div class="explanation-box">
|
| 626 |
-
|
| 627 |
</div>
|
| 628 |
""")
|
| 629 |
|
|
|
|
| 561 |
# Add a conclusion section at the bottom
|
| 562 |
gr.Markdown("""
|
| 563 |
<div class="explanation-box">
|
| 564 |
+
The LWM embeddings demonstrate remarkable generalization capabilities, enabling impressive performance even with minimal training samples. This highlights their ability to effectively handle diverse tasks with limited data.
|
| 565 |
</div>
|
| 566 |
""")
|
| 567 |
|
|
|
|
| 623 |
# Add a conclusion section at the bottom
|
| 624 |
gr.Markdown("""
|
| 625 |
<div class="explanation-box">
|
| 626 |
+
Despite their compact size (1/32 of the raw channels), LWM CLS embeddings capture rich, holistic information about the channels. This makes them exceptionally well-suited for tasks like LoS/NLoS classification, especially when working with very limited data.
|
| 627 |
</div>
|
| 628 |
""")
|
| 629 |
|