Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -25,7 +25,7 @@ def beam_prediction_task(data_percentage, task_complexity):
|
|
25 |
raw_cm = compute_average_confusion_matrix(raw_folder)
|
26 |
if raw_cm is not None:
|
27 |
raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
|
28 |
-
plot_confusion_matrix_beamPred(raw_cm, classes=np.arange(raw_cm.shape[0]), title=f"Raw Confusion Matrix
|
29 |
raw_img = Image.open(raw_cm_path)
|
30 |
else:
|
31 |
raw_img = None
|
@@ -68,7 +68,7 @@ def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
|
|
68 |
|
69 |
# Set dark mode styling
|
70 |
plt.style.use('dark_background')
|
71 |
-
plt.figure(figsize=(
|
72 |
|
73 |
# Plot the confusion matrix with a dark-mode compatible colormap
|
74 |
sns.heatmap(cm, cmap="magma", cbar=True, linecolor='white')
|
@@ -80,20 +80,17 @@ def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
|
|
80 |
plt.xticks(tick_marks, classes, color="white", fontsize=10) # White text for dark mode
|
81 |
plt.yticks(tick_marks, classes, color="white", fontsize=10) # White text for dark mode
|
82 |
|
83 |
-
|
84 |
plt.ylabel('True label', color="white", fontsize=12)
|
85 |
plt.xlabel('Predicted label', color="white", fontsize=12)
|
86 |
plt.tight_layout()
|
87 |
|
88 |
# Save the plot as an image
|
89 |
-
plt.savefig(save_path, transparent=True) # Use transparent to blend with the dark mode website
|
90 |
plt.close()
|
91 |
|
92 |
# Return the saved image
|
93 |
return Image.open(save_path)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
def compute_average_confusion_matrix(folder):
|
98 |
confusion_matrices = []
|
99 |
max_num_labels = 0
|
|
|
25 |
raw_cm = compute_average_confusion_matrix(raw_folder)
|
26 |
if raw_cm is not None:
|
27 |
raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
|
28 |
+
plot_confusion_matrix_beamPred(raw_cm, classes=np.arange(raw_cm.shape[0]), title=f"Raw Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=raw_cm_path)
|
29 |
raw_img = Image.open(raw_cm_path)
|
30 |
else:
|
31 |
raw_img = None
|
|
|
68 |
|
69 |
# Set dark mode styling
|
70 |
plt.style.use('dark_background')
|
71 |
+
plt.figure(figsize=(7, 7), facecolor='#2f2f2f')
|
72 |
|
73 |
# Plot the confusion matrix with a dark-mode compatible colormap
|
74 |
sns.heatmap(cm, cmap="magma", cbar=True, linecolor='white')
|
|
|
80 |
plt.xticks(tick_marks, classes, color="white", fontsize=10) # White text for dark mode
|
81 |
plt.yticks(tick_marks, classes, color="white", fontsize=10) # White text for dark mode
|
82 |
|
|
|
83 |
plt.ylabel('True label', color="white", fontsize=12)
|
84 |
plt.xlabel('Predicted label', color="white", fontsize=12)
|
85 |
plt.tight_layout()
|
86 |
|
87 |
# Save the plot as an image
|
88 |
+
plt.savefig(save_path, facecolor='#2f2f2f', transparent=True) # Use transparent to blend with the dark mode website
|
89 |
plt.close()
|
90 |
|
91 |
# Return the saved image
|
92 |
return Image.open(save_path)
|
93 |
|
|
|
|
|
94 |
def compute_average_confusion_matrix(folder):
|
95 |
confusion_matrices = []
|
96 |
max_num_labels = 0
|