Sadjad Alikhani commited on
Commit
c565027
·
verified ·
1 Parent(s): 5ccfb52

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -30
app.py CHANGED
@@ -205,18 +205,6 @@ def handle_user_choice(choice, percentage_idx=None, uploaded_file=None):
205
  else:
206
  return "Invalid choice", "Invalid choice", "" # Return empty string for console output
207
 
208
-
209
-
210
-
211
-
212
-
213
-
214
-
215
-
216
-
217
-
218
-
219
-
220
  # Custom class to capture print output
221
  class PrintCapture(io.StringIO):
222
  def __init__(self):
@@ -249,15 +237,6 @@ def display_predefined_images(percentage_idx):
249
 
250
  return raw_image, embeddings_image
251
 
252
- # Updated los_nlos_classification to handle missing outputs properly
253
- #def los_nlos_classification(file, percentage_idx):
254
- # if file is not None:
255
- # raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage_idx)
256
- # return raw_cm_image, emb_cm_image, console_output
257
- # else:
258
- # raw_image, embeddings_image = display_predefined_images(percentage_idx)
259
- # return raw_image, embeddings_image, "No file uploaded. Displaying predefined images."
260
-
261
  def los_nlos_classification(file, percentage_idx):
262
  if file is not None:
263
  raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage_idx)
@@ -271,13 +250,6 @@ def create_random_image(size=(300, 300)):
271
  random_image = np.random.rand(*size, 3) * 255
272
  return Image.fromarray(random_image.astype('uint8'))
273
 
274
- # Function to load the pre-trained model from your cloned repository
275
- def load_custom_model():
276
- from lwm_model import LWM # Assuming the model is defined in lwm_model.py
277
- model = LWM() # Modify this according to your model initialization
278
- model.eval()
279
- return model
280
-
281
  import importlib.util
282
 
283
  # Function to dynamically load a Python module from a given file path
@@ -350,7 +322,6 @@ def plot_confusion_matrix(y_true, y_pred, title):
350
  plt.savefig(f"{title}.png")
351
  return Image.open(f"{title}.png")
352
 
353
-
354
  def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
355
  N = output_emb.shape[0] # Get the total number of samples
356
 
@@ -502,7 +473,7 @@ with gr.Blocks(css="""
502
  choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Default Dataset")
503
 
504
  # Dropdown for selecting percentage for predefined data
505
- percentage_dropdown_los = gr.Dropdown(choices=list(range(20)), value=0, label="Percentage of Data for Training")
506
 
507
  # File uploader for dataset (only visible if user chooses to upload a dataset)
508
  file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"], visible=False)
 
205
  else:
206
  return "Invalid choice", "Invalid choice", "" # Return empty string for console output
207
 
 
 
 
 
 
 
 
 
 
 
 
 
208
  # Custom class to capture print output
209
  class PrintCapture(io.StringIO):
210
  def __init__(self):
 
237
 
238
  return raw_image, embeddings_image
239
 
 
 
 
 
 
 
 
 
 
240
  def los_nlos_classification(file, percentage_idx):
241
  if file is not None:
242
  raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage_idx)
 
250
  random_image = np.random.rand(*size, 3) * 255
251
  return Image.fromarray(random_image.astype('uint8'))
252
 
 
 
 
 
 
 
 
253
  import importlib.util
254
 
255
  # Function to dynamically load a Python module from a given file path
 
322
  plt.savefig(f"{title}.png")
323
  return Image.open(f"{title}.png")
324
 
 
325
  def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
326
  N = output_emb.shape[0] # Get the total number of samples
327
 
 
473
  choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Default Dataset")
474
 
475
  # Dropdown for selecting percentage for predefined data
476
+ percentage_dropdown_los = gr.Dropdown(choices=[f"{value:.3f}" for value in percentage_values_los], value=f"{percentage_values_los[0]:.3f}", label="Percentage of Data for Training")
477
 
478
  # File uploader for dataset (only visible if user chooses to upload a dataset)
479
  file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"], visible=False)