Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -47,11 +47,41 @@ def beam_prediction_task(data_percentage, task_complexity):
|
|
| 47 |
|
| 48 |
return raw_img, embeddings_img
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
plt.figure(figsize=(8, 6))
|
| 52 |
plt.imshow(cm, interpolation='nearest', cmap='coolwarm')
|
| 53 |
-
plt.title(
|
| 54 |
plt.colorbar()
|
|
|
|
| 55 |
tick_marks = np.arange(len(classes))
|
| 56 |
plt.xticks(tick_marks, classes, rotation=45)
|
| 57 |
plt.yticks(tick_marks, classes)
|
|
@@ -61,6 +91,22 @@ def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
|
|
| 61 |
plt.xlabel('Predicted label')
|
| 62 |
plt.savefig(save_path)
|
| 63 |
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Function to compute the average confusion matrix across CSV files in a folder
|
| 66 |
#def compute_average_confusion_matrix(folder):
|
|
|
|
| 47 |
|
| 48 |
return raw_img, embeddings_img
|
| 49 |
|
| 50 |
+
from sklearn.metrics import f1_score
|
| 51 |
+
|
| 52 |
+
# Function to compute the F1-score based on the confusion matrix
|
| 53 |
+
def compute_f1_score(cm):
|
| 54 |
+
# Compute precision and recall
|
| 55 |
+
TP = np.diag(cm)
|
| 56 |
+
FP = np.sum(cm, axis=0) - TP
|
| 57 |
+
FN = np.sum(cm, axis=1) - TP
|
| 58 |
+
|
| 59 |
+
precision = TP / (TP + FP)
|
| 60 |
+
recall = TP / (TP + FN)
|
| 61 |
+
|
| 62 |
+
# Handle division by zero in precision or recall
|
| 63 |
+
precision = np.nan_to_num(precision)
|
| 64 |
+
recall = np.nan_to_num(recall)
|
| 65 |
+
|
| 66 |
+
# Compute F1 score
|
| 67 |
+
f1 = 2 * (precision * recall) / (precision + recall)
|
| 68 |
+
f1 = np.nan_to_num(f1) # Replace NaN with 0
|
| 69 |
+
return np.mean(f1) # Return the mean F1-score across all classes
|
| 70 |
+
|
| 71 |
+
# Function to plot and save confusion matrix with F1-score in the title
|
| 72 |
def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
|
| 73 |
+
# Compute the average F1-score
|
| 74 |
+
avg_f1 = compute_f1_score(cm)
|
| 75 |
+
|
| 76 |
+
# Update title to include average F1-score
|
| 77 |
+
full_title = f"{title} (Avg F1-Score: {avg_f1:.2f})"
|
| 78 |
+
|
| 79 |
+
# Plot the confusion matrix
|
| 80 |
plt.figure(figsize=(8, 6))
|
| 81 |
plt.imshow(cm, interpolation='nearest', cmap='coolwarm')
|
| 82 |
+
plt.title(full_title)
|
| 83 |
plt.colorbar()
|
| 84 |
+
|
| 85 |
tick_marks = np.arange(len(classes))
|
| 86 |
plt.xticks(tick_marks, classes, rotation=45)
|
| 87 |
plt.yticks(tick_marks, classes)
|
|
|
|
| 91 |
plt.xlabel('Predicted label')
|
| 92 |
plt.savefig(save_path)
|
| 93 |
plt.close()
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
#def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
|
| 97 |
+
# plt.figure(figsize=(8, 6))
|
| 98 |
+
# plt.imshow(cm, interpolation='nearest', cmap='coolwarm')
|
| 99 |
+
# plt.title(title)
|
| 100 |
+
# plt.colorbar()
|
| 101 |
+
# tick_marks = np.arange(len(classes))
|
| 102 |
+
# plt.xticks(tick_marks, classes, rotation=45)
|
| 103 |
+
# plt.yticks(tick_marks, classes)
|
| 104 |
+
#
|
| 105 |
+
# plt.tight_layout()
|
| 106 |
+
# plt.ylabel('True label')
|
| 107 |
+
# plt.xlabel('Predicted label')
|
| 108 |
+
# plt.savefig(save_path)
|
| 109 |
+
# plt.close()
|
| 110 |
|
| 111 |
# Function to compute the average confusion matrix across CSV files in a folder
|
| 112 |
#def compute_average_confusion_matrix(folder):
|