import gradio as gr import os from PIL import Image import numpy as np # Paths to the predefined images folder RAW_PATH = os.path.join("images", "raw") EMBEDDINGS_PATH = os.path.join("images", "embeddings") GENERATED_PATH = os.path.join("images", "generated") # Specific values for percentage and complexity percentage_values = [10, 30, 50, 70, 100] complexity_values = [16, 32] # Function to load and display predefined images based on user selection def display_predefined_images(percentage_idx, complexity_idx): # Map the slider index to the actual value percentage = percentage_values[percentage_idx] complexity = complexity_values[complexity_idx] # Generate the paths to the images raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png") embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png") # Load images using PIL raw_image = Image.open(raw_image_path) embeddings_image = Image.open(embeddings_image_path) # Return the loaded images return raw_image, embeddings_image import torch from transformers import AutoModel # Assuming you use a transformer-like model in your LWM repo import numpy as np import importlib.util import torch import numpy as np import importlib.util import subprocess import os # Function to load the pre-trained model from your cloned repository def load_custom_model(): # Assume your model is in the cloned LWM repository from lwm_model import LWM # Assuming the model is defined in lwm_model.py model = LWM() # Modify this according to your model initialization model.eval() # Set the model to evaluation mode return model # Function to process the uploaded .py file and perform inference using the custom model def process_python_file(uploaded_file, percentage_idx, complexity_idx): try: # Clone the repository if not already done (for model and tokenizer) model_repo_url = "https://huggingface.co/sadjadalikhani/LWM" model_repo_dir = "./LWM" if not os.path.exists(model_repo_dir): print(f"Cloning model repository from {model_repo_url}...") subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True) # Change the working directory to the cloned LWM folder if os.path.exists(model_repo_dir): os.chdir(model_repo_dir) print(f"Changed working directory to {os.getcwd()}") else: return f"Directory {model_repo_dir} does not exist." # Step 1: Load the custom model model = load_custom_model() # Step 2: Import the tokenizer from input_preprocess import tokenizer # Step 3: Load the uploaded .py file that contains the wireless channel matrix # Import the Python file dynamically spec = importlib.util.spec_from_file_location("uploaded_module", uploaded_file.name) uploaded_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(uploaded_module) # Assuming the uploaded file defines a variable called 'channel_matrix' channel_matrix = uploaded_module.channel_matrix # This should be defined in the uploaded file # Step 4: Tokenize the data if needed (or perform any necessary preprocessing) preprocessed_data = tokenizer(manual_data=channel_matrix, gen_raw=True) # Step 5: Perform inference on the channel matrix using the model with torch.no_grad(): input_tensor = torch.tensor(preprocessed_data).unsqueeze(0) # Add batch dimension output = model(input_tensor) # Perform inference # Step 6: Generate new images based on the inference results generated_raw_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result generated_embeddings_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result # Save the generated images generated_raw_image_path = os.path.join(GENERATED_PATH, f"generated_raw_{percentage_idx}_{complexity_idx}.png") generated_embeddings_image_path = os.path.join(GENERATED_PATH, f"generated_embeddings_{percentage_idx}_{complexity_idx}.png") Image.fromarray(generated_raw_img.astype(np.uint8)).save(generated_raw_image_path) Image.fromarray(generated_embeddings_img.astype(np.uint8)).save(generated_embeddings_image_path) # Load the generated images raw_image = Image.open(generated_raw_image_path) embeddings_image = Image.open(generated_embeddings_image_path) return raw_image, embeddings_image except Exception as e: return str(e), str(e) # Function to handle logic based on whether a file is uploaded or not def los_nlos_classification(file, percentage_idx, complexity_idx): if file is not None: # Process the uploaded file and generate new images return process_python_file(file, percentage_idx, complexity_idx) else: # Display predefined images if no file is uploaded return display_predefined_images(percentage_idx, complexity_idx) # Define the Gradio interface with gr.Blocks(css=""" .vertical-slider input[type=range] { writing-mode: bt-lr; /* IE */ -webkit-appearance: slider-vertical; /* WebKit */ width: 8px; height: 200px; } .slider-container { display: inline-block; margin-right: 50px; text-align: center; } """) as demo: # Contact Section gr.Markdown( """ ## Contact
""" ) # Tabs for Beam Prediction and LoS/NLoS Classification with gr.Tab("Beam Prediction Task"): gr.Markdown("### Beam Prediction Task") # Sliders for percentage and complexity with gr.Row(): with gr.Column(elem_id="slider-container"): gr.Markdown("Percentage of Data for Training") percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") with gr.Column(elem_id="slider-container"): gr.Markdown("Task Complexity") complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider") # Image outputs (display the images side by side and set a smaller size for the images) with gr.Row(): raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) # Instant image updates when sliders change percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) with gr.Tab("LoS/NLoS Classification Task"): gr.Markdown("### LoS/NLoS Classification Task") # File uploader for uploading .py file file_input = gr.File(label="Upload .py File", file_types=[".py"]) # Sliders for percentage and complexity with gr.Row(): with gr.Column(elem_id="slider-container"): gr.Markdown("Percentage of Data for Training") percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") with gr.Column(elem_id="slider-container"): gr.Markdown("Task Complexity") complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider") # Image outputs (display the images side by side and set a smaller size for the images) with gr.Row(): raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) # Instant image updates based on file upload or slider changes file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los]) percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los]) complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los]) # Launch the app if __name__ == "__main__": demo.launch()