import gradio as gr import os from PIL import Image import numpy as np import pickle import io import sys import torch import torch import subprocess # Paths to the predefined images folder RAW_PATH = os.path.join("images", "raw") EMBEDDINGS_PATH = os.path.join("images", "embeddings") GENERATED_PATH = os.path.join("images", "generated") # Specific values for percentage and complexity percentage_values = [10, 30, 50, 70, 100] complexity_values = [16, 32] # Custom class to capture print output class PrintCapture(io.StringIO): def __init__(self): super().__init__() self.output = [] def write(self, txt): self.output.append(txt) super().write(txt) def get_output(self): return ''.join(self.output) # Function to load and display predefined images based on user selection #def display_predefined_images(percentage_idx, complexity_idx): # percentage = percentage_values[percentage_idx] # complexity = complexity_values[complexity_idx] # raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png") # embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png") # raw_image = Image.open(raw_image_path) # embeddings_image = Image.open(embeddings_image_path) # return raw_image, embeddings_image def display_predefined_images(percentage_idx, complexity_idx): # Map the slider index to the actual value percentage = percentage_values[percentage_idx] complexity = complexity_values[complexity_idx] # Generate the paths to the images raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png") embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png") # Check if the images exist if not os.path.exists(raw_image_path): return None, None # Or handle the error appropriately if not os.path.exists(embeddings_image_path): return None, None # Or handle the error appropriately # Load images using PIL raw_image = Image.open(raw_image_path) embeddings_image = Image.open(embeddings_image_path) # Return the loaded images return raw_image, embeddings_image # Function to load the pre-trained model from your cloned repository def load_custom_model(): from lwm_model import LWM # Assuming the model is defined in lwm_model.py model = LWM() # Modify this according to your model initialization model.eval() return model # Function to process the uploaded .p file and perform inference using the custom model def process_p_file(uploaded_file, percentage_idx, complexity_idx): capture = PrintCapture() sys.stdout = capture # Redirect print statements to capture try: model_repo_url = "https://huggingface.co/sadjadalikhani/LWM" model_repo_dir = "./LWM" # Step 1: Clone the repository if not already done if not os.path.exists(model_repo_dir): print(f"Cloning model repository from {model_repo_url}...") subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True) # Step 2: Verify the repository was cloned if os.path.exists(model_repo_dir): os.chdir(model_repo_dir) print(f"Changed working directory to {os.getcwd()}") print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content else: print(f"Directory {model_repo_dir} does not exist.") return # Step 3: Add the cloned repo to sys.path for imports if model_repo_dir not in sys.path: sys.path.append(model_repo_dir) # Step 4: Debugging - Print sys.path to ensure the cloned repo is in the path print(f"sys.path: {sys.path}") # Ensure the 'LWM' directory is in the path lwm_model_dir = os.path.join(os.getcwd(), 'LWM') if lwm_model_dir not in sys.path: sys.path.append(lwm_model_dir) # Step 5: Verify if lwm_model.py exists in the directory lwm_model_path = os.path.join(lwm_model_dir, 'lwm_model.py') if not os.path.exists(lwm_model_path): print(f"Error: lwm_model.py not found at {lwm_model_path}") return f"Error: lwm_model.py not found at {lwm_model_path}" else: print(f"lwm_model.py found at {lwm_model_path}") # Step 6: Import lwm_model after ensuring path is set from lwm_model import LWM device = 'cpu' print(f"Loading the LWM model on {device}...") model = LWM.from_pretrained(device=device) # Step 7: Import tokenizer and load data from input_preprocess import tokenizer with open(uploaded_file.name, 'rb') as f: manual_data = pickle.load(f) preprocessed_chs = tokenizer(manual_data=manual_data) # Step 8: Perform inference from inference import lwm_inference, create_raw_dataset output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model) output_raw = create_raw_dataset(preprocessed_chs, device) print(f"Output Embeddings Shape: {output_emb.shape}") print(f"Output Raw Shape: {output_raw.shape}") return output_emb, output_raw, capture.get_output() except Exception as e: return str(e), str(e), capture.get_output() finally: sys.stdout = sys.__stdout__ # Reset print statements # Function to handle logic based on whether a file is uploaded or not def los_nlos_classification(file, percentage_idx, complexity_idx): if file is not None: return process_p_file(file, percentage_idx, complexity_idx) else: return display_predefined_images(percentage_idx, complexity_idx), None # Define the Gradio interface with gr.Blocks(css=""" .vertical-slider input[type=range] { writing-mode: bt-lr; /* IE */ -webkit-appearance: slider-vertical; /* WebKit */ width: 8px; height: 200px; } .slider-container { display: inline-block; margin-right: 50px; text-align: center; } """) as demo: # Contact Section gr.Markdown( """ ## Contact
""" ) # Tabs for Beam Prediction and LoS/NLoS Classification with gr.Tab("Beam Prediction Task"): gr.Markdown("### Beam Prediction Task") with gr.Row(): with gr.Column(elem_id="slider-container"): gr.Markdown("Percentage of Data for Training") percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") with gr.Column(elem_id="slider-container"): gr.Markdown("Task Complexity") complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider") with gr.Row(): raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) with gr.Tab("LoS/NLoS Classification Task"): gr.Markdown("### LoS/NLoS Classification Task") file_input = gr.File(label="Upload .p File", file_types=[".p"]) with gr.Row(): with gr.Column(elem_id="slider-container"): gr.Markdown("Percentage of Data for Training") percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") with gr.Column(elem_id="slider-container"): gr.Markdown("Task Complexity") complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider") with gr.Row(): raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) output_textbox = gr.Textbox(label="Console Output", lines=10) file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox]) percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox]) complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox]) # Launch the app if __name__ == "__main__": demo.launch()