import gradio as gr import os from PIL import Image # Paths to the images folder RAW_PATH = os.path.join("images", "raw") EMBEDDINGS_PATH = os.path.join("images", "embeddings") # Specific values for percentage and complexity percentage_values = [10, 30, 50, 70, 100] complexity_values = [16, 32] # Function to load and display images based on user selection def display_images(percentage_idx, complexity_idx): # Map the slider index to the actual value percentage = percentage_values[percentage_idx] complexity = complexity_values[complexity_idx] # Generate the paths to the images raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png") embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png") # Load images using PIL raw_image = Image.open(raw_image_path) embeddings_image = Image.open(embeddings_image_path) # Return the loaded images return raw_image, embeddings_image # Define the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Raw vs. Embeddings Inference Results") gr.Markdown("Use the sliders to adjust the percentage of data for training and task complexity.") # Layout for vertical side-by-side sliders with gr.Row(): # Column for percentage slider with gr.Column(): percentage_slider = gr.Slider(minimum=0, maximum=4, step=1, value=0, label="Percentage of Data for Training (10, 30, 50, 70, 100)", interactive=True, orientation="vertical") # Column for complexity slider with gr.Column(): complexity_slider = gr.Slider(minimum=0, maximum=1, step=1, value=0, label="Task Complexity (16, 32)", interactive=True, orientation="vertical") # Outputs (display the images side by side and set a smaller size for the images) with gr.Row(): raw_img = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) # Smaller image size embeddings_img = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) # Smaller image size # Trigger image updates when sliders change percentage_slider.change(fn=display_images, inputs=[percentage_slider, complexity_slider], outputs=[raw_img, embeddings_img]) complexity_slider.change(fn=display_images, inputs=[percentage_slider, complexity_slider], outputs=[raw_img, embeddings_img]) # Launch the app if __name__ == "__main__": demo.launch()