import gradio as gr import os from PIL import Image # Paths to the images folder RAW_PATH = os.path.join("images", "raw") EMBEDDINGS_PATH = os.path.join("images", "embeddings") # Specific values for percentage and complexity percentage_values = [10, 30, 50, 70, 100] complexity_values = [16, 32] # Function to load and display images based on user selection def display_images(percentage_idx, complexity_idx): # Map the slider index to the actual value percentage = percentage_values[percentage_idx] complexity = complexity_values[complexity_idx] # Generate the paths to the images raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png") embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png") # Load images using PIL raw_image = Image.open(raw_image_path) embeddings_image = Image.open(embeddings_image_path) # Return the loaded images return raw_image, embeddings_image # Define the beam prediction function (template based) def beam_prediction(input_data, percentage_idx, complexity_idx): # Add your beam prediction logic here (this is placeholder code) raw_img, embeddings_img = display_images(percentage_idx, complexity_idx) return raw_img, embeddings_img # Define the LoS/NLoS classification function (template based) def los_nlos_classification(input_data, percentage_idx, complexity_idx): # Add your LoS/NLoS classification logic here (this is placeholder code) raw_img, embeddings_img = display_images(percentage_idx, complexity_idx) return raw_img, embeddings_img # Define the Gradio interface with gr.Blocks(css=""" .vertical-slider input[type=range] { writing-mode: bt-lr; /* IE */ -webkit-appearance: slider-vertical; /* WebKit */ width: 8px; height: 200px; } .slider-container { display: inline-block; margin-right: 50px; text-align: center; } """) as demo: # Contact Section gr.Markdown( """ ## Contact
""" ) # Tabs for Beam Prediction and LoS/NLoS Classification with gr.Tab("Beam Prediction Task"): gr.Markdown("### Beam Prediction Task") beam_input = gr.Textbox(label="Enter Input Data for Beam Prediction", placeholder="Enter data here...") # Sliders for percentage and complexity with gr.Row(): with gr.Column(elem_id="slider-container"): gr.Markdown("Percentage of Data for Training") percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") with gr.Column(elem_id="slider-container"): gr.Markdown("Task Complexity") complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider") # Image outputs (display the images side by side and set a smaller size for the images) with gr.Row(): raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) # Button to trigger beam prediction beam_button = gr.Button("Predict Beam") beam_button.click(beam_prediction, inputs=[beam_input, percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp]) with gr.Tab("LoS/NLoS Classification Task"): gr.Markdown("### LoS/NLoS Classification Task") los_input = gr.Textbox(label="Enter Input Data for LoS/NLoS Classification", placeholder="Enter data here...") # Sliders for percentage and complexity with gr.Row(): with gr.Column(elem_id="slider-container"): gr.Markdown("Percentage of Data for Training") percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider") with gr.Column(elem_id="slider-container"): gr.Markdown("Task Complexity") complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider") # Image outputs (display the images side by side and set a smaller size for the images) with gr.Row(): raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) # Button to trigger classification los_button = gr.Button("Classify") los_button.click(los_nlos_classification, inputs=[los_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los]) # Launch the app if __name__ == "__main__": demo.launch()