import gradio as gr import os from PIL import Image # Paths to the images folder RAW_PATH = os.path.join("images", "raw") EMBEDDINGS_PATH = os.path.join("images", "embeddings") # Function to load and display images based on user selection def display_images(percentage, complexity): # Generate the paths to the images raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png") embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png") # Load images using PIL raw_image = Image.open(raw_image_path) embeddings_image = Image.open(embeddings_image_path) # Return the loaded images return raw_image, embeddings_image # Define the Gradio interface data_percentage_options = [10, 30, 50, 70, 100] # Specific percentage values task_complexity_options = [16, 32] # Specific task complexity values # Define the layout and appearance of the UI with gr.Blocks() as demo: gr.Markdown("# Raw vs. Embeddings Inference Results") gr.Markdown("Select a data percentage and task complexity to view the corresponding inference result for raw channels and embeddings.") # Inputs (using Dropdowns for discrete values) with gr.Column(): percentage_dropdown = gr.Dropdown(choices=data_percentage_options, label="Percentage of Data for Training", value=10) complexity_dropdown = gr.Dropdown(choices=task_complexity_options, label="Task Complexity", value=16) # Outputs (display the images side by side and set a smaller size for the images) with gr.Row(): raw_img = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False) # Smaller image size embeddings_img = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False) # Smaller image size # Trigger image updates when inputs change percentage_dropdown.change(fn=display_images, inputs=[percentage_dropdown, complexity_dropdown], outputs=[raw_img, embeddings_img]) complexity_dropdown.change(fn=display_images, inputs=[percentage_dropdown, complexity_dropdown], outputs=[raw_img, embeddings_img]) # Launch the app if __name__ == "__main__": demo.launch()