File size: 7,578 Bytes
bad52c6 6ed06d5 bad52c6 4b1dcee 6ed06d5 4b1dcee bad52c6 6ed06d5 bad52c6 6ed06d5 4b1dcee bad52c6 6ed06d5 bad52c6 4b1dcee bad52c6 4b1dcee 37839fd bad52c6 6ed06d5 4b1dcee bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 6ed06d5 bad52c6 4b1dcee bad52c6 4b1dcee bad52c6 4b1dcee bad52c6 6ed06d5 bad52c6 37839fd bad52c6 6ed06d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
#!/usr/bin/env python3
"""
ai_csv_editor_hf.py ββ AI-powered CSV editor using a Hugging Face model on CPU.
This version patches Gradioβs JSONβschema introspector to skip over
boolean schemas and avoid the "const in schema" TypeError.
"""
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 0. MONKEY-PATCH for gradio_client.utils.get_type to handle bool schemas
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
try:
import gradio_client.utils as _client_utils
_old_get_type = _client_utils.get_type
def _patched_get_type(schema):
# If schema is unexpectedly a bool, just return a generic "Any"
if isinstance(schema, bool):
return "Any"
return _old_get_type(schema)
_client_utils.get_type = _patched_get_type
except ImportError:
# If gradio_client isn't present yet, we'll let it import later
pass
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1. LOAD A SMALL INSTRUCTION-FOLLOWING MODEL (CPU only)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import json
import tempfile
import textwrap
import pathlib
from typing import List, Dict, Any
import pandas as pd
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
MODEL_NAME = "google/flan-t5-base"
MAX_NEW_TOKS = 256
TEMPERATURE = 0.0
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_NAME,
device_map="cpu", # force CPU placement
torch_dtype="auto"
)
generator = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=MAX_NEW_TOKS,
temperature=TEMPERATURE,
do_sample=False,
)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2. PROMPT β JSON βEDIT PLANβ
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
SYSTEM_PROMPT = textwrap.dedent("""\
You are an assistant that converts natural-language spreadsheet commands
into JSON edit plans. Respond with ONLY valid JSON matching this schema:
{
"actions": [
{
"operation": "concat | vlookup | xlookup | sumif",
"target": "string",
# For CONCAT:
"columns": ["colA","colB"],
"separator": " ",
# For VLOOKUP / XLOOKUP:
"lookup_value": "KeyInMain",
"lookup_file": "other.csv",
"lookup_column": "KeyInOther",
"return_column": "Value",
"exact": true,
# For SUMIF:
"criteria_column": "Category",
"criteria": "Foo",
"sum_column": "Amount"
}
]
}
""")
def plan_from_command(cmd: str) -> Dict[str, Any]:
prompt = f"{SYSTEM_PROMPT}\n\nUser: {cmd}\nJSON:"
output = generator(
prompt,
max_new_tokens=MAX_NEW_TOKS,
temperature=TEMPERATURE,
do_sample=False,
)[0]["generated_text"]
try:
return json.loads(output)
except json.JSONDecodeError as e:
raise ValueError(f"Model returned invalid JSON:\n{output}") from e
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3. DATA OPERATIONS
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def apply_action(df: pd.DataFrame,
uploads: Dict[str, pd.DataFrame],
act: Dict[str, Any]) -> pd.DataFrame:
op = act["operation"]
if op == "concat":
sep = act.get("separator", "")
df[act["target"]] = (
df[act["columns"]]
.astype(str)
.agg(sep.join, axis=1)
)
elif op in {"vlookup", "xlookup"}:
lookup_df = uploads[act["lookup_file"]]
right = lookup_df[[act["lookup_column"], act["return_column"]]] \
.rename(columns={
act["lookup_column"]: act["lookup_value"],
act["return_column"]: act["target"]
})
df = df.merge(right, on=act["lookup_value"], how="left")
elif op == "sumif":
mask = df[act["criteria_column"]] == act["criteria"]
total = df.loc[mask, act["sum_column"]].sum()
df[act["target"]] = total
else:
raise ValueError(f"Unsupported operation: {op}")
return df
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4. GRADIO UI
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def run_editor(files: List[gr.File], command: str):
if not files:
return None, "β οΈ Please upload at least one CSV file.", None
uploads = {
pathlib.Path(f.name).name: pd.read_csv(f.name)
for f in files
}
main_name = list(uploads.keys())[0]
df = uploads[main_name]
try:
plan = plan_from_command(command)
except Exception as e:
return None, f"β LLM error: {e}", None
try:
for act in plan["actions"]:
df = apply_action(df, uploads, act)
except Exception as e:
return None, f"β Execution error: {e}", None
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
df.to_csv(tmp.name, index=False)
return df.head(20), "β
Success! Download below.", tmp.name
with gr.Blocks(title="AI CSV Editor (HF, CPU)") as demo:
gr.Markdown("## AI-powered CSV Editor \n"
"1. Upload one main CSV (first) plus any lookup tables \n"
"2. Type a spreadsheet-style instruction \n"
"3. Download the modified CSV")
csv_files = gr.Files(file_types=[".csv"], label="Upload CSV file(s)")
cmd_box = gr.Textbox(lines=2, placeholder="e.g. concat First Last β FullName")
run_btn = gr.Button("Apply")
preview = gr.Dataframe(label="Preview (first 20 rows)")
status = gr.Markdown()
download = gr.File(label="Download Result")
run_btn.click(
run_editor,
[csv_files, cmd_box],
[preview, status, download]
)
if __name__ == "__main__":
demo.launch()
|