Spaces:
Running
Running
File size: 963 Bytes
81ac59f d709633 9d1b8e4 d709633 f6f44a7 d709633 f6f44a7 d709633 f6f44a7 d709633 f6f44a7 d709633 f6f44a7 d709633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import torch
from diffusers import FluxPipeline
import gradio as gr
# Load the model and set to CPU
pipe = FluxPipeline.from_pretrained("Shakker-Labs/AWPortrait-FL", torch_dtype=torch.float32)
pipe.to("cpu") # Set to CPU
# Define the function to generate an image from a given prompt
def generate_image(prompt):
image = pipe(prompt,
num_inference_steps=24,
guidance_scale=3.5,
width=768, height=1024).images[0]
image.save(f"example.png")
return image
# Create a Gradio interface
def inference(prompt):
image = generate_image(prompt)
return image
# Gradio Interface
interface = gr.Interface(
fn=inference,
inputs=gr.Textbox(lines=2, placeholder="Enter your image description here..."),
outputs="image",
title="Text-to-Image Generator",
description="Enter a text prompt to generate an image using AWPortrait-FL."
)
# Launch the Gradio interface
interface.launch()
|