Update app.py
Browse files
app.py
CHANGED
|
@@ -1,40 +1,24 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
import torch.nn.functional as F
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# Load model
|
| 8 |
-
|
| 9 |
-
model = CLIPModel.from_pretrained(model_name)
|
| 10 |
-
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_name)
|
| 11 |
-
tokenizer = BertTokenizer.from_pretrained(model_name)
|
| 12 |
|
| 13 |
def compute_similarity(image, text):
|
| 14 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 15 |
|
| 16 |
-
# Process image
|
| 17 |
-
image_inputs = feature_extractor(images=image, return_tensors="pt")
|
| 18 |
-
|
| 19 |
-
# Process text (Remove `token_type_ids`)
|
| 20 |
-
text_inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 21 |
-
text_inputs.pop("token_type_ids", None)
|
| 22 |
-
|
| 23 |
with torch.no_grad():
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
# Print to debug
|
| 29 |
-
print("Image Embedding:", image_embeds)
|
| 30 |
-
print("Text Embedding:", text_embeds)
|
| 31 |
-
|
| 32 |
-
# Normalize embeddings
|
| 33 |
-
image_embeds = F.normalize(image_embeds, p=2, dim=-1)
|
| 34 |
-
text_embeds = F.normalize(text_embeds, p=2, dim=-1)
|
| 35 |
|
| 36 |
# Compute cosine similarity
|
| 37 |
-
similarity_score = (
|
| 38 |
|
| 39 |
return similarity_score
|
| 40 |
|
|
@@ -47,4 +31,4 @@ demo = gr.Interface(
|
|
| 47 |
description="Upload an image and enter a text prompt to get the similarity score."
|
| 48 |
)
|
| 49 |
|
| 50 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModel
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
import torch.nn.functional as F
|
| 6 |
+
import requests
|
| 7 |
+
from io import BytesIO
|
| 8 |
|
| 9 |
+
# Load model with remote code support
|
| 10 |
+
model = AutoModel.from_pretrained('jinaai/jina-clip-v1', trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def compute_similarity(image, text):
|
| 13 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
with torch.no_grad():
|
| 16 |
+
# Encode text and image using JinaAI CLIP model
|
| 17 |
+
text_embeds = model.encode_text([text]) # Expecting list input
|
| 18 |
+
image_embeds = model.encode_image([image]) # Expecting list input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# Compute cosine similarity
|
| 21 |
+
similarity_score = (text_embeds @ image_embeds.T).item()
|
| 22 |
|
| 23 |
return similarity_score
|
| 24 |
|
|
|
|
| 31 |
description="Upload an image and enter a text prompt to get the similarity score."
|
| 32 |
)
|
| 33 |
|
| 34 |
+
demo.launch()
|