import gradio as gr import torch from transformers import pipeline device = 0 if torch.cuda.is_available() else -1 sentiment_pipeline = pipeline("text-classification", model="winain7788/bert-finetuned-sem_eval-english", device=device) async def get_sentiment(text): return sentiment_pipeline([text]) demo = gr.Interface(fn=get_sentiment, inputs="text", outputs="json") demo.launch()