Spaces:
Runtime error
Runtime error
wira.indra
commited on
Commit
·
faf61e8
1
Parent(s):
42535f1
add twitter feature
Browse files- app.py +68 -5
- requirements.txt +5 -1
app.py
CHANGED
|
@@ -1,4 +1,10 @@
|
|
| 1 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
from gradio.mix import Parallel
|
|
@@ -28,11 +34,28 @@ examples = [
|
|
| 28 |
def sentiment_analysis(text):
|
| 29 |
output = sentiment_pipeline(text)
|
| 30 |
return {elm["label"]: elm["score"] for elm in output[0]}
|
| 31 |
-
|
| 32 |
def ner(text):
|
| 33 |
output = ner_pipeline(text)
|
| 34 |
return {"text": text, "entities": output}
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
sentiment_demo = gr.Interface(
|
| 37 |
fn=sentiment_analysis,
|
| 38 |
inputs="text",
|
|
@@ -45,7 +68,47 @@ ner_demo = gr.Interface(
|
|
| 45 |
examples=examples)
|
| 46 |
|
| 47 |
if __name__ == "__main__":
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import pipeline
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import re
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import twitter_scraper as ts
|
| 7 |
+
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
from gradio.mix import Parallel
|
|
|
|
| 34 |
def sentiment_analysis(text):
|
| 35 |
output = sentiment_pipeline(text)
|
| 36 |
return {elm["label"]: elm["score"] for elm in output[0]}
|
| 37 |
+
|
| 38 |
def ner(text):
|
| 39 |
output = ner_pipeline(text)
|
| 40 |
return {"text": text, "entities": output}
|
| 41 |
|
| 42 |
+
def sentiment_df(df):
|
| 43 |
+
text_list = list(df["Text"].astype(str).values)
|
| 44 |
+
result = [sentiment_analysis(text) for text in text_list]
|
| 45 |
+
df['Label'] = [pred['label'] for pred in result]
|
| 46 |
+
df['Score'] = [round(pred['Score'], 3) for pred in result]
|
| 47 |
+
return df
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def twitter_analyzer(keyword, max_tweets):
|
| 51 |
+
df = ts.scrape_tweets(keyword, max_tweets=max_tweets)
|
| 52 |
+
df["Text"] = df["Text"].apply(ts.preprocess_text)
|
| 53 |
+
print("Analyzing sentiment...")
|
| 54 |
+
df = sentiment_df(df)
|
| 55 |
+
fig = plt.figure()
|
| 56 |
+
df.groupby(["Label"])["Text"].count().plot.pie(autopct="%.1f%%", figsize=(6,6))
|
| 57 |
+
return fig, df[["URL", "Text", "Label", "Score"]]
|
| 58 |
+
|
| 59 |
sentiment_demo = gr.Interface(
|
| 60 |
fn=sentiment_analysis,
|
| 61 |
inputs="text",
|
|
|
|
| 68 |
examples=examples)
|
| 69 |
|
| 70 |
if __name__ == "__main__":
|
| 71 |
+
|
| 72 |
+
with gr.Blocks() as demo:
|
| 73 |
+
|
| 74 |
+
gr.Markdown("""Entity Based Sentiment Analysis Indonesia""")
|
| 75 |
+
|
| 76 |
+
gr.Markdown(
|
| 77 |
+
"""
|
| 78 |
+
"""
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
with gr.Tab("Single Input"):
|
| 82 |
+
Parallel(
|
| 83 |
+
sentiment_demo, ner_demo,
|
| 84 |
+
inputs=gr.Textbox(lines=10, label="Input Text", placeholder="Enter sentences here..."),
|
| 85 |
+
examples=examples
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
with gr.Tab("Twitter"):
|
| 89 |
+
with gr.Blocks():
|
| 90 |
+
with gr.Row():
|
| 91 |
+
with gr.Column():
|
| 92 |
+
keyword_textbox = gr.Textbox(lines=1, label="Keyword")
|
| 93 |
+
max_tweets_component = gr.Number(value=10, label="Total of Tweets to Scrape", precision=0)
|
| 94 |
+
button = gr.Button("Submit")
|
| 95 |
+
|
| 96 |
+
plot_component = gr.Plot(label="Pie Chart of Sentiments")
|
| 97 |
+
dataframe_component = gr.DataFrame(type="pandas",
|
| 98 |
+
label="Dataframe",
|
| 99 |
+
max_rows=(20,'fixed'),
|
| 100 |
+
overflow_row_behaviour='paginate',
|
| 101 |
+
wrap=True)
|
| 102 |
+
|
| 103 |
+
gr.Markdown(
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
button.click(twitter_analyzer,
|
| 111 |
+
inputs=[keyword_textbox, max_tweets_component],
|
| 112 |
+
outputs=[plot_component, dataframe_component])
|
| 113 |
+
|
| 114 |
+
demo.launch(inbrowser=True)
|
requirements.txt
CHANGED
|
@@ -1,2 +1,6 @@
|
|
| 1 |
torch
|
| 2 |
-
transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
torch
|
| 2 |
+
transformers
|
| 3 |
+
snscrape
|
| 4 |
+
pandas
|
| 5 |
+
matplotlib
|
| 6 |
+
numpy
|