vidhanm
updated generate function
2af1927
raw
history blame
7.4 kB
import sys
import os
from PIL import Image as PILImage # Add at the top of your app.py if not already there
from typing import Optional
# Add the cloned nanoVLM directory to Python's system path
NANOVLM_REPO_PATH = "/app/nanoVLM"
if NANOVLM_REPO_PATH not in sys.path:
sys.path.insert(0, NANOVLM_REPO_PATH)
import gradio as gr
from PIL import Image
import torch
from transformers import CLIPImageProcessor, GPT2TokenizerFast
try:
from models.vision_language_model import VisionLanguageModel
print("Successfully imported VisionLanguageModel from nanoVLM clone.")
except ImportError as e:
print(f"Error importing VisionLanguageModel from nanoVLM clone: {e}.")
VisionLanguageModel = None
device_choice = os.environ.get("DEVICE", "auto")
if device_choice == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
else:
device = device_choice
print(f"Using device: {device}")
model_id_for_weights = "lusxvr/nanoVLM-222M"
image_processor_id = "openai/clip-vit-base-patch32"
tokenizer_id = "gpt2"
image_processor = None
tokenizer = None
model = None
if VisionLanguageModel:
try:
print(f"Attempting to load CLIPImageProcessor from: {image_processor_id}")
image_processor = CLIPImageProcessor.from_pretrained(image_processor_id) # Removed trust_remote_code if not strictly needed by processor
print("CLIPImageProcessor loaded.")
print(f"Attempting to load GPT2TokenizerFast from: {tokenizer_id}")
tokenizer = GPT2TokenizerFast.from_pretrained(tokenizer_id) # Removed trust_remote_code if not strictly needed by tokenizer
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Set tokenizer pad_token to eos_token.")
print("GPT2TokenizerFast loaded.")
print(f"Attempting to load model weights from {model_id_for_weights} using VisionLanguageModel.from_pretrained")
model = VisionLanguageModel.from_pretrained(model_id_for_weights).to(device)
print("Model loaded successfully.")
model.eval()
except Exception as e:
print(f"Error loading model or processor components: {e}")
import traceback
traceback.print_exc()
image_processor = None; tokenizer = None; model = None
else:
print("Custom VisionLanguageModel class not imported, cannot load model.")
def prepare_inputs(text_list, image_input, image_processor_instance, tokenizer_instance, device_to_use):
# This function is fine
if image_processor_instance is None or tokenizer_instance is None:
raise ValueError("Image processor or tokenizer not initialized.")
processed_image = image_processor_instance(images=image_input, return_tensors="pt").pixel_values.to(device_to_use)
processed_text = tokenizer_instance(
text=text_list, return_tensors="pt", padding=True, truncation=True, max_length=getattr(tokenizer_instance, 'model_max_length', 512)
)
input_ids = processed_text.input_ids.to(device_to_use)
attention_mask = processed_text.attention_mask.to(device_to_use)
return {"pixel_values": processed_image, "input_ids": input_ids, "attention_mask": attention_mask}
def generate_text_for_image(image_input: Optional[PILImage.Image], prompt_input: Optional[str]) -> str:
if model is None or image_processor is None or tokenizer is None:
return "Error: Model or processor components not loaded correctly. Check logs."
if image_input is None: return "Please upload an image."
if not prompt_input: return "Please provide a prompt."
try:
current_pil_image = image_input
if not isinstance(current_pil_image, PILImage.Image):
current_pil_image = PILImage.fromarray(current_pil_image)
if current_pil_image.mode != "RGB":
current_pil_image = current_pil_image.convert("RGB")
inputs = prepare_inputs(
text_list=[prompt_input], image_input=current_pil_image,
image_processor_instance=image_processor, tokenizer_instance=tokenizer, device_to_use=device
)
print(f"Debug: Shapes before model.generate: pixel_values={inputs['pixel_values'].shape}, input_ids={inputs['input_ids'].shape}, attention_mask={inputs['attention_mask'].shape}")
# --- CORRECTED model.generate CALL ---
# Match the signature: def generate(self, input_ids, image, attention_mask=None, max_new_tokens=...)
generated_ids = model.generate(
inputs['input_ids'], # 1st argument: input_ids (text prompt)
inputs['pixel_values'], # 2nd argument: image (pixel values)
inputs['attention_mask'], # 3rd argument: attention_mask (for text)
max_new_tokens=150, # Keyword argument for max_new_tokens
# Other optional keyword arguments from the signature can be added here:
# top_k=50,
# top_p=0.9,
# temperature=0.7, # Default is 0.5 in the provided signature
# greedy=False
)
generated_text_list = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
generated_text = generated_text_list[0] if generated_text_list else ""
if prompt_input and generated_text.startswith(prompt_input):
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
else:
cleaned_text = generated_text
return cleaned_text.strip()
except Exception as e:
print(f"Error during generation: {e}")
import traceback
traceback.print_exc()
return f"An error occurred during text generation: {str(e)}"
description = "Interactive demo for lusxvr/nanoVLM-222M."
# example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" # Not used for now
print("Defining Gradio interface...")
try:
iface = gr.Interface(
fn=generate_text_for_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Your Prompt/Question")
],
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
title="Interactive nanoVLM-222M Demo",
description=description,
# examples=[ # <<<< REMOVED EXAMPLES
# [example_image_url, "a photo of a"],
# [example_image_url, "Describe the image in detail."],
# ],
allow_flagging="never"
)
print("Gradio interface defined.")
except Exception as e:
print(f"Error defining Gradio interface: {e}")
import traceback; traceback.print_exc()
iface = None
if __name__ == "__main__":
if model is None or image_processor is None or tokenizer is None:
print("CRITICAL: Model or processor components failed to load. Gradio might not work.")
if iface is not None:
print("Launching Gradio interface...")
try:
iface.launch(server_name="0.0.0.0", server_port=7860)
except Exception as e:
print(f"Error launching Gradio interface: {e}")
import traceback; traceback.print_exc()
# This is where the ValueError: When localhost is not accessible... usually comes from
# if the underlying TypeError has already happened during iface setup.
else:
print("Gradio interface could not be defined due to earlier errors.")