Spaces:
Sleeping
Sleeping
import sys | |
import os | |
from typing import Optional | |
from PIL import Image as PILImage | |
# Add the cloned nanoVLM directory to Python's system path | |
NANOVLM_REPO_PATH = "/app/nanoVLM" | |
if NANOVLM_REPO_PATH not in sys.path: | |
print(f"DEBUG: Adding {NANOVLM_REPO_PATH} to sys.path") | |
sys.path.insert(0, NANOVLM_REPO_PATH) | |
import gradio as gr | |
import torch | |
from transformers import AutoProcessor # Using AutoProcessor as in generate.py | |
VisionLanguageModel = None | |
try: | |
print("DEBUG: Attempting to import VisionLanguageModel") | |
from models.vision_language_model import VisionLanguageModel | |
print("DEBUG: Successfully imported VisionLanguageModel.") | |
except ImportError as e: | |
print(f"CRITICAL ERROR: Importing VisionLanguageModel: {e}") | |
# --- Device Setup --- | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"DEBUG: Using device: {device}") | |
# --- Configuration --- | |
# This will be used for both model and processor, as in generate.py | |
model_repo_id = "lusxvr/nanoVLM-222M" | |
print(f"DEBUG: Model Repository ID for model and processor: {model_repo_id}") | |
# --- Initialize --- | |
processor = None | |
model = None | |
if VisionLanguageModel: # Only proceed if custom model class was imported | |
try: | |
# Load processor using AutoProcessor, like in generate.py | |
print(f"DEBUG: Loading processor using AutoProcessor.from_pretrained('{model_repo_id}')") | |
# Using trust_remote_code=True here as a precaution, | |
# though ideally not needed if processor_config.json is complete. | |
processor = AutoProcessor.from_pretrained(model_repo_id, trust_remote_code=True) | |
print(f"DEBUG: AutoProcessor loaded: {type(processor)}") | |
# Ensure tokenizer has pad_token set if it's GPT-2 based | |
if hasattr(processor, 'tokenizer') and processor.tokenizer is not None: | |
if getattr(processor.tokenizer, 'pad_token', None) is None: # Check if pad_token attribute exists and is None | |
processor.tokenizer.pad_token = processor.tokenizer.eos_token | |
print(f"DEBUG: Set processor.tokenizer.pad_token to eos_token (ID: {processor.tokenizer.eos_token_id})") | |
else: | |
print("DEBUG: Processor does not have a 'tokenizer' attribute or it is None.") | |
# Load model, like in generate.py | |
print(f"DEBUG: Loading model VisionLanguageModel.from_pretrained('{model_repo_id}')") | |
model = VisionLanguageModel.from_pretrained(model_repo_id).to(device) | |
print(f"DEBUG: VisionLanguageModel loaded: {type(model)}") | |
model.eval() | |
print("DEBUG: Model set to eval() mode.") | |
except Exception as e: | |
print(f"CRITICAL ERROR loading model or processor with AutoProcessor: {e}") | |
import traceback | |
traceback.print_exc() | |
processor = None; model = None | |
else: | |
print("CRITICAL ERROR: VisionLanguageModel class not imported. Cannot load model.") | |
# --- Text Generation Function --- | |
def generate_text_for_image(image_input_pil: Optional[PILImage.Image], prompt_input_str: Optional[str]) -> str: | |
print(f"DEBUG (generate_text_for_image): Received prompt: '{prompt_input_str}'") | |
if model is None or processor is None: | |
return "Error: Model or processor not loaded. Check logs." | |
if image_input_pil is None: return "Please upload an image." | |
if not prompt_input_str: return "Please provide a prompt." | |
try: | |
current_pil_image = image_input_pil | |
if not isinstance(current_pil_image, PILImage.Image): | |
current_pil_image = PILImage.fromarray(current_pil_image) | |
if current_pil_image.mode != "RGB": | |
current_pil_image = current_pil_image.convert("RGB") | |
print(f"DEBUG: Image prepped - size: {current_pil_image.size}, mode: {current_pil_image.mode}") | |
# Prepare inputs using the AutoProcessor, as in generate.py | |
print("DEBUG: Processing inputs with AutoProcessor...") | |
inputs = processor( | |
text=[prompt_input_str], images=current_pil_image, return_tensors="pt" | |
).to(device) | |
print(f"DEBUG: Inputs from AutoProcessor - keys: {inputs.keys()}") | |
print(f"DEBUG: input_ids shape: {inputs['input_ids'].shape}, values: {inputs['input_ids']}") | |
print(f"DEBUG: pixel_values shape: {inputs['pixel_values'].shape}") | |
# Ensure attention_mask is present, default to ones if not (though AutoProcessor should provide it) | |
attention_mask = inputs.get('attention_mask') | |
if attention_mask is None: | |
print("WARN: attention_mask not found in processor output, creating a default one of all 1s.") | |
attention_mask = torch.ones_like(inputs['input_ids']).to(device) | |
print(f"DEBUG: attention_mask shape: {attention_mask.shape}") | |
print("DEBUG: Calling model.generate (aligning with nanoVLM's generate.py)...") | |
# Signature for nanoVLM's generate: (self, input_ids, image, attention_mask, max_new_tokens, ...) | |
# `image` parameter in generate() corresponds to `pixel_values` from processor output | |
generated_ids_tensor = model.generate( | |
inputs['input_ids'], # 1st argument to model.generate: input_ids (text prompt) | |
inputs['pixel_values'], # 2nd argument to model.generate: image (pixel values) | |
attention_mask, # 3rd argument to model.generate: attention_mask | |
max_new_tokens=30, # Corresponds to 4th argument in model.generate | |
temperature=0.7, # Match generate.py default or your choice | |
top_k=50, # Match generate.py default or your choice | |
greedy=False # Match generate.py default or your choice | |
# top_p is also an option from generate.py's model.generate | |
) | |
print(f"DEBUG: Raw generated_ids: {generated_ids_tensor}") | |
generated_text_list = processor.batch_decode(generated_ids_tensor, skip_special_tokens=True) | |
print(f"DEBUG: Decoded text list: {generated_text_list}") | |
generated_text_str = generated_text_list[0] if generated_text_list else "" | |
cleaned_text_str = generated_text_str | |
if prompt_input_str and generated_text_str.startswith(prompt_input_str): | |
cleaned_text_str = generated_text_str[len(prompt_input_str):].lstrip(" ,.:") | |
print(f"DEBUG: Final cleaned text: '{cleaned_text_str}'") | |
return cleaned_text_str.strip() | |
except Exception as e: | |
print(f"CRITICAL ERROR during generation: {e}") | |
import traceback | |
traceback.print_exc() | |
return f"Error during generation: {str(e)}" | |
# --- Gradio Interface --- | |
description_md = """ | |
## Interactive nanoVLM-222M Demo (Mirroring generate.py) | |
Trying to replicate the working `generate.py` script from `huggingface/nanoVLM`. | |
Using AutoProcessor for inputs. | |
""" | |
iface = None | |
if processor and model: | |
try: | |
iface = gr.Interface( | |
fn=generate_text_for_image, | |
inputs=[gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Your Prompt")], | |
outputs=gr.Textbox(label="Generated Text", show_copy_button=True), | |
title="nanoVLM-222M Demo (generate.py Alignment)", | |
description=description_md, | |
allow_flagging="never" | |
) | |
print("DEBUG: Gradio interface defined.") | |
except Exception as e: | |
print(f"CRITICAL ERROR defining Gradio interface: {e}") | |
import traceback; traceback.print_exc() | |
if __name__ == "__main__": | |
if iface: | |
print("DEBUG: Launching Gradio...") | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |
else: | |
print("CRITICAL ERROR: Gradio interface not defined or model/processor failed to load. Cannot launch.") |