vidhanm
trying to solve config file error
97c8139
raw
history blame
5.05 kB
import sys
import os
# Add the cloned nanoVLM directory to Python's system path
NANOVLM_REPO_PATH = "/app/nanoVLM"
if NANOVLM_REPO_PATH not in sys.path:
sys.path.insert(0, NANOVLM_REPO_PATH)
import gradio as gr
from PIL import Image
import torch
from transformers import AutoProcessor # AutoProcessor should still be fine
# Import the custom VisionLanguageModel class from the cloned nanoVLM repository
try:
from models.vision_language_model import VisionLanguageModel
print("Successfully imported VisionLanguageModel from nanoVLM clone.")
except ImportError as e:
print(f"Error importing VisionLanguageModel from nanoVLM clone: {e}. Check NANOVLM_REPO_PATH and ensure nanoVLM cloned correctly.")
VisionLanguageModel = None
# Determine the device to use
device_choice = os.environ.get("DEVICE", "auto")
if device_choice == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
else:
device = device_choice
print(f"Using device: {device}")
# Load the model and processor
model_id = "lusxvr/nanoVLM-222M"
processor = None
model = None
if VisionLanguageModel:
try:
print(f"Attempting to load processor for {model_id}")
# trust_remote_code=True might be beneficial if the processor config itself refers to custom code,
# though less likely for processors.
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
print("Processor loaded.")
print(f"Attempting to load model {model_id} using VisionLanguageModel.from_pretrained")
# The VisionLanguageModel.from_pretrained method should handle its own configuration loading
# from the model_id repository (which includes config.json).
# trust_remote_code=True here allows the custom VisionLanguageModel code to run.
model = VisionLanguageModel.from_pretrained(model_id, trust_remote_code=True).to(device)
print("Model loaded successfully.")
model.eval() # Set to evaluation mode
except Exception as e:
print(f"Error loading model or processor: {e}")
processor = None
model = None
else:
print("Custom VisionLanguageModel class not imported, cannot load model.")
def generate_text_for_image(image_input, prompt_input):
if model is None or processor is None:
return "Error: Model or processor not loaded correctly. Check logs."
if image_input is None:
return "Please upload an image."
if not prompt_input:
return "Please provide a prompt."
try:
if not isinstance(image_input, Image.Image):
pil_image = Image.fromarray(image_input)
else:
pil_image = image_input
if pil_image.mode != "RGB":
pil_image = pil_image.convert("RGB")
inputs = processor(text=[prompt_input], images=[pil_image], return_tensors="pt").to(device)
# Call the generate method of the VisionLanguageModel instance
# Check the definition of generate in nanoVLM/models/vision_language_model.py for exact signature if issues persist
# It likely expects pixel_values and input_ids directly or as part of a dictionary
generated_ids = model.generate(
pixel_values=inputs.get('pixel_values'),
input_ids=inputs.get('input_ids'),
attention_mask=inputs.get('attention_mask'),
max_new_tokens=150,
num_beams=3,
no_repeat_ngram_size=2,
early_stopping=True
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
if prompt_input and generated_text.startswith(prompt_input):
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
else:
cleaned_text = generated_text
return cleaned_text.strip()
except Exception as e:
print(f"Error during generation: {e}")
return f"An error occurred during text generation: {str(e)}"
description = "Interactive demo for lusxvr/nanoVLM-222M."
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
gradio_cache_dir = os.environ.get("GRADIO_TEMP_DIR", "/tmp/gradio_tmp")
iface = gr.Interface(
fn=generate_text_for_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Your Prompt/Question")
],
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
title="Interactive nanoVLM-222M Demo",
description=description,
examples=[
[example_image_url, "a photo of a"],
[example_image_url, "Describe the image in detail."],
],
cache_examples=True,
examples_cache_folder=gradio_cache_dir,
allow_flagging="never"
)
if __name__ == "__main__":
if model is None or processor is None:
print("CRITICAL: Model or processor failed to load. Gradio interface may not function correctly.")
else:
print("Launching Gradio interface...")
iface.launch(server_name="0.0.0.0", server_port=7860)