Spaces:
Running
Running
vidhanm
commited on
Commit
·
4670dfa
1
Parent(s):
1313dd4
Add application files for nanoVLM
Browse files- Dockerfile +30 -0
- app.py +113 -0
- requirements.txt +6 -0
Dockerfile
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use a slim Python base image. For GPU, you'd need a CUDA-enabled base.
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set the working directory in the container
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install git (useful for some Hugging Face model/tokenizer downloads that might use it)
|
| 8 |
+
# Also install common build tools often needed for Python packages
|
| 9 |
+
RUN apt-get update && apt-get install -y \
|
| 10 |
+
git \
|
| 11 |
+
build-essential \
|
| 12 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 13 |
+
|
| 14 |
+
# Copy the requirements file first to leverage Docker layer caching
|
| 15 |
+
COPY requirements.txt requirements.txt
|
| 16 |
+
|
| 17 |
+
# Install Python dependencies
|
| 18 |
+
# --no-cache-dir reduces image size
|
| 19 |
+
# --prefer-binary can speed up builds for packages with binary distributions
|
| 20 |
+
RUN pip install --no-cache-dir --prefer-binary -r requirements.txt
|
| 21 |
+
|
| 22 |
+
# Copy the application code into the container
|
| 23 |
+
COPY app.py app.py
|
| 24 |
+
|
| 25 |
+
# Expose the port Gradio will run on (default is 7860)
|
| 26 |
+
EXPOSE 7860
|
| 27 |
+
|
| 28 |
+
# Set the default command to run the Gradio application
|
| 29 |
+
# Using `python -u` for unbuffered output, which is good for logging
|
| 30 |
+
CMD ["python", "-u", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# Determine the device to use
|
| 8 |
+
# Using os.environ.get to allow device override from Space hardware config if needed
|
| 9 |
+
# Defaults to CUDA if available, else CPU.
|
| 10 |
+
device_choice = os.environ.get("DEVICE", "auto")
|
| 11 |
+
if device_choice == "auto":
|
| 12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
else:
|
| 14 |
+
device = device_choice
|
| 15 |
+
|
| 16 |
+
print(f"Using device: {device}")
|
| 17 |
+
|
| 18 |
+
# Load the model and processor
|
| 19 |
+
model_id = "lusxvr/nanoVLM-222M"
|
| 20 |
+
try:
|
| 21 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 22 |
+
model = AutoModelForVision2Seq.from_pretrained(model_id).to(device)
|
| 23 |
+
print("Model and processor loaded successfully.")
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Error loading model/processor: {e}")
|
| 26 |
+
# If loading fails, we'll have the Gradio app display an error.
|
| 27 |
+
# This helps in debugging if the Space doesn't start correctly.
|
| 28 |
+
processor = None
|
| 29 |
+
model = None
|
| 30 |
+
|
| 31 |
+
def generate_text_for_image(image_input, prompt_input):
|
| 32 |
+
"""
|
| 33 |
+
Generates text based on an image and a text prompt.
|
| 34 |
+
"""
|
| 35 |
+
if model is None or processor is None:
|
| 36 |
+
return "Error: Model or processor not loaded. Check the Space logs for details."
|
| 37 |
+
|
| 38 |
+
if image_input is None:
|
| 39 |
+
return "Please upload an image."
|
| 40 |
+
if not prompt_input:
|
| 41 |
+
return "Please provide a prompt (e.g., 'Describe this image' or 'What color is the car?')."
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
# Ensure the image is in PIL format and RGB
|
| 45 |
+
if not isinstance(image_input, Image.Image):
|
| 46 |
+
pil_image = Image.fromarray(image_input)
|
| 47 |
+
else:
|
| 48 |
+
pil_image = image_input
|
| 49 |
+
|
| 50 |
+
if pil_image.mode != "RGB":
|
| 51 |
+
pil_image = pil_image.convert("RGB")
|
| 52 |
+
|
| 53 |
+
# Prepare inputs for the model
|
| 54 |
+
# The prompt for nanoVLM is typically a question or an instruction.
|
| 55 |
+
inputs = processor(text=[prompt_input], images=[pil_image], return_tensors="pt").to(device)
|
| 56 |
+
|
| 57 |
+
# Generate text
|
| 58 |
+
# You can adjust max_new_tokens, temperature, top_k, etc.
|
| 59 |
+
generated_ids = model.generate(
|
| 60 |
+
**inputs,
|
| 61 |
+
max_new_tokens=150, # Increased for potentially longer descriptions
|
| 62 |
+
num_beams=3, # Example of adding beam search
|
| 63 |
+
no_repeat_ngram_size=2,
|
| 64 |
+
early_stopping=True
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# Decode the generated tokens
|
| 68 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 69 |
+
|
| 70 |
+
# The output might sometimes include the prompt itself, depending on the model.
|
| 71 |
+
# Simple heuristic to remove prompt if it appears at the beginning:
|
| 72 |
+
if generated_text.startswith(prompt_input):
|
| 73 |
+
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
|
| 74 |
+
else:
|
| 75 |
+
cleaned_text = generated_text
|
| 76 |
+
|
| 77 |
+
return cleaned_text.strip()
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
print(f"Error during generation: {e}")
|
| 81 |
+
return f"An error occurred: {str(e)}"
|
| 82 |
+
|
| 83 |
+
# Create the Gradio interface
|
| 84 |
+
description = """
|
| 85 |
+
Upload an image and provide a text prompt (e.g., "What is in this image?", "Describe the animal in detail.").
|
| 86 |
+
The model will generate a textual response based on the visual content and your query.
|
| 87 |
+
This Space uses the `lusxvr/nanoVLM-222M` model.
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
# Example image from COCO dataset
|
| 91 |
+
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" # A cat and a remote
|
| 92 |
+
|
| 93 |
+
iface = gr.Interface(
|
| 94 |
+
fn=generate_text_for_image,
|
| 95 |
+
inputs=[
|
| 96 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 97 |
+
gr.Textbox(label="Your Prompt/Question", info="e.g., 'What is this a picture of?', 'Describe the main subject.', 'How many animals are there?'")
|
| 98 |
+
],
|
| 99 |
+
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
|
| 100 |
+
title="Interactive nanoVLM-222M Demo",
|
| 101 |
+
description=description,
|
| 102 |
+
examples=[
|
| 103 |
+
[example_image_url, "a photo of a"],
|
| 104 |
+
[example_image_url, "Describe the image in detail."],
|
| 105 |
+
[example_image_url, "What objects are on the sofa?"],
|
| 106 |
+
],
|
| 107 |
+
cache_examples=True # Cache results for examples to load faster
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
if __name__ == "__main__":
|
| 111 |
+
# For Hugging Face Spaces, it's common to launch with server_name="0.0.0.0"
|
| 112 |
+
# The Space infrastructure handles the public URL and port mapping.
|
| 113 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
transformers>=4.36.0
|
| 3 |
+
Pillow>=10.0.0
|
| 4 |
+
gradio
|
| 5 |
+
sentencepiece
|
| 6 |
+
accelerate
|