Spaces:
Running
Running
vidhanm
commited on
Commit
·
e198913
1
Parent(s):
fbe5121
now cloning github repo for its files
Browse files- Dockerfile +8 -7
- app.py +67 -34
Dockerfile
CHANGED
|
@@ -5,34 +5,35 @@ FROM python:3.9-slim
|
|
| 5 |
WORKDIR /app
|
| 6 |
|
| 7 |
# Set Hugging Face cache directory and Gradio temp/flagging dir
|
| 8 |
-
# These will be within /app or /tmp, which we can make writable.
|
| 9 |
ENV HF_HOME=/app/.cache/huggingface
|
| 10 |
ENV GRADIO_TEMP_DIR=/tmp/gradio_tmp
|
| 11 |
ENV GRADIO_FLAGGING_DIR=/tmp/gradio_flags
|
| 12 |
|
| 13 |
-
# Install git and build-essential
|
| 14 |
RUN apt-get update && apt-get install -y \
|
| 15 |
git \
|
| 16 |
build-essential \
|
| 17 |
&& rm -rf /var/lib/apt/lists/*
|
| 18 |
|
| 19 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
RUN mkdir -p $HF_HOME $GRADIO_TEMP_DIR $GRADIO_FLAGGING_DIR && \
|
| 21 |
chmod -R 777 $HF_HOME $GRADIO_TEMP_DIR $GRADIO_FLAGGING_DIR
|
| 22 |
|
| 23 |
-
# Copy the requirements file first
|
| 24 |
COPY requirements.txt requirements.txt
|
| 25 |
|
| 26 |
# Install Python dependencies
|
| 27 |
-
# --no-cache-dir reduces image size
|
| 28 |
RUN pip install --no-cache-dir --prefer-binary -r requirements.txt
|
| 29 |
|
| 30 |
# Copy the application code into the container
|
| 31 |
COPY app.py app.py
|
| 32 |
|
| 33 |
-
# Expose the port Gradio will run on
|
| 34 |
EXPOSE 7860
|
| 35 |
|
| 36 |
# Set the default command to run the Gradio application
|
| 37 |
-
# Using `python -u` for unbuffered output, which is good for logging
|
| 38 |
CMD ["python", "-u", "app.py"]
|
|
|
|
| 5 |
WORKDIR /app
|
| 6 |
|
| 7 |
# Set Hugging Face cache directory and Gradio temp/flagging dir
|
|
|
|
| 8 |
ENV HF_HOME=/app/.cache/huggingface
|
| 9 |
ENV GRADIO_TEMP_DIR=/tmp/gradio_tmp
|
| 10 |
ENV GRADIO_FLAGGING_DIR=/tmp/gradio_flags
|
| 11 |
|
| 12 |
+
# Install git and build-essential
|
| 13 |
RUN apt-get update && apt-get install -y \
|
| 14 |
git \
|
| 15 |
build-essential \
|
| 16 |
&& rm -rf /var/lib/apt/lists/*
|
| 17 |
|
| 18 |
+
# Clone the original nanoVLM repository for its model definition files
|
| 19 |
+
# This makes the `models` directory from nanoVLM available under /app/nanoVLM
|
| 20 |
+
RUN git clone https://github.com/huggingface/nanoVLM.git /app/nanoVLM
|
| 21 |
+
|
| 22 |
+
# Create the cache and temp directories and make them writable
|
| 23 |
RUN mkdir -p $HF_HOME $GRADIO_TEMP_DIR $GRADIO_FLAGGING_DIR && \
|
| 24 |
chmod -R 777 $HF_HOME $GRADIO_TEMP_DIR $GRADIO_FLAGGING_DIR
|
| 25 |
|
| 26 |
+
# Copy the requirements file first
|
| 27 |
COPY requirements.txt requirements.txt
|
| 28 |
|
| 29 |
# Install Python dependencies
|
|
|
|
| 30 |
RUN pip install --no-cache-dir --prefer-binary -r requirements.txt
|
| 31 |
|
| 32 |
# Copy the application code into the container
|
| 33 |
COPY app.py app.py
|
| 34 |
|
| 35 |
+
# Expose the port Gradio will run on
|
| 36 |
EXPOSE 7860
|
| 37 |
|
| 38 |
# Set the default command to run the Gradio application
|
|
|
|
| 39 |
CMD ["python", "-u", "app.py"]
|
app.py
CHANGED
|
@@ -1,8 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
import torch
|
| 4 |
-
from transformers import AutoProcessor
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Determine the device to use
|
| 8 |
device_choice = os.environ.get("DEVICE", "auto")
|
|
@@ -17,25 +36,44 @@ model_id = "lusxvr/nanoVLM-222M"
|
|
| 17 |
processor = None
|
| 18 |
model = None
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
def generate_text_for_image(image_input, prompt_input):
|
| 32 |
-
if model is None or processor is None:
|
| 33 |
-
return "Error: Model or processor not loaded
|
| 34 |
|
| 35 |
if image_input is None:
|
| 36 |
return "Please upload an image."
|
| 37 |
if not prompt_input:
|
| 38 |
-
return "Please provide a prompt
|
| 39 |
|
| 40 |
try:
|
| 41 |
if not isinstance(image_input, Image.Image):
|
|
@@ -46,19 +84,26 @@ def generate_text_for_image(image_input, prompt_input):
|
|
| 46 |
if pil_image.mode != "RGB":
|
| 47 |
pil_image = pil_image.convert("RGB")
|
| 48 |
|
|
|
|
|
|
|
|
|
|
| 49 |
inputs = processor(text=[prompt_input], images=[pil_image], return_tensors="pt").to(device)
|
| 50 |
|
|
|
|
|
|
|
| 51 |
generated_ids = model.generate(
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
max_new_tokens=150,
|
| 54 |
num_beams=3,
|
| 55 |
no_repeat_ngram_size=2,
|
| 56 |
early_stopping=True
|
|
|
|
| 57 |
)
|
| 58 |
|
| 59 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 60 |
|
| 61 |
-
# Basic cleaning of the prompt if the model includes it in the output
|
| 62 |
if prompt_input and generated_text.startswith(prompt_input):
|
| 63 |
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
|
| 64 |
else:
|
|
@@ -68,26 +113,17 @@ def generate_text_for_image(image_input, prompt_input):
|
|
| 68 |
|
| 69 |
except Exception as e:
|
| 70 |
print(f"Error during generation: {e}")
|
| 71 |
-
# Provide a more user-friendly error if possible
|
| 72 |
return f"An error occurred during text generation: {str(e)}"
|
| 73 |
|
| 74 |
-
description = ""
|
| 75 |
-
|
| 76 |
-
The model will generate a textual response based on the visual content and your query.
|
| 77 |
-
This Space uses the `lusxvr/nanoVLM-222M` model.
|
| 78 |
-
"""
|
| 79 |
-
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" # A cat and a remote
|
| 80 |
-
|
| 81 |
-
# Get the pre-defined writable directory for Gradio's temporary files/cache
|
| 82 |
-
# This environment variable is set in your Dockerfile.
|
| 83 |
gradio_cache_dir = os.environ.get("GRADIO_TEMP_DIR", "/tmp/gradio_tmp")
|
| 84 |
|
| 85 |
-
|
| 86 |
iface = gr.Interface(
|
| 87 |
fn=generate_text_for_image,
|
| 88 |
inputs=[
|
| 89 |
gr.Image(type="pil", label="Upload Image"),
|
| 90 |
-
gr.Textbox(label="Your Prompt/Question"
|
| 91 |
],
|
| 92 |
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
|
| 93 |
title="Interactive nanoVLM-222M Demo",
|
|
@@ -95,18 +131,15 @@ iface = gr.Interface(
|
|
| 95 |
examples=[
|
| 96 |
[example_image_url, "a photo of a"],
|
| 97 |
[example_image_url, "Describe the image in detail."],
|
| 98 |
-
[example_image_url, "What objects are on the sofa?"],
|
| 99 |
],
|
| 100 |
cache_examples=True,
|
| 101 |
-
# Use the writable directory for caching examples
|
| 102 |
examples_cache_folder=gradio_cache_dir,
|
| 103 |
allow_flagging="never"
|
| 104 |
)
|
| 105 |
|
| 106 |
if __name__ == "__main__":
|
| 107 |
if model is None or processor is None:
|
| 108 |
-
print("CRITICAL: Model or processor failed to load. Gradio interface
|
| 109 |
-
# You could raise an error here or sys.exit(1) to make the Space fail clearly if loading is essential.
|
| 110 |
else:
|
| 111 |
print("Launching Gradio interface...")
|
| 112 |
-
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
# Add the cloned nanoVLM directory to Python's system path
|
| 5 |
+
# This allows us to import from the 'models' directory within nanoVLM
|
| 6 |
+
NANOVLM_REPO_PATH = "/app/nanoVLM" # Path where we cloned it in Dockerfile
|
| 7 |
+
if NANOVLM_REPO_PATH not in sys.path:
|
| 8 |
+
sys.path.insert(0, NANOVLM_REPO_PATH)
|
| 9 |
+
|
| 10 |
import gradio as gr
|
| 11 |
from PIL import Image
|
| 12 |
import torch
|
| 13 |
+
from transformers import AutoProcessor # AutoProcessor might still work
|
| 14 |
+
|
| 15 |
+
# Now import the custom classes from the cloned nanoVLM repository
|
| 16 |
+
try:
|
| 17 |
+
from models.vision_language_model import VisionLanguageModel
|
| 18 |
+
from models.configurations import VisionLanguageConfig # Or the specific config class used by nanoVLM
|
| 19 |
+
print("Successfully imported VisionLanguageModel and VisionLanguageConfig from nanoVLM clone.")
|
| 20 |
+
except ImportError as e:
|
| 21 |
+
print(f"Error importing from nanoVLM clone: {e}. Check NANOVLM_REPO_PATH and ensure nanoVLM cloned correctly.")
|
| 22 |
+
VisionLanguageModel = None
|
| 23 |
+
VisionLanguageConfig = None
|
| 24 |
+
|
| 25 |
|
| 26 |
# Determine the device to use
|
| 27 |
device_choice = os.environ.get("DEVICE", "auto")
|
|
|
|
| 36 |
processor = None
|
| 37 |
model = None
|
| 38 |
|
| 39 |
+
if VisionLanguageModel and VisionLanguageConfig:
|
| 40 |
+
try:
|
| 41 |
+
print(f"Attempting to load processor for {model_id}")
|
| 42 |
+
# Processor loading might still be okay with AutoProcessor,
|
| 43 |
+
# as processor_config.json is usually standard.
|
| 44 |
+
# trust_remote_code might be needed if processor has custom code too.
|
| 45 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 46 |
+
print("Processor loaded.")
|
| 47 |
+
|
| 48 |
+
print(f"Attempting to load model config for {model_id} using VisionLanguageConfig")
|
| 49 |
+
# Load the configuration using the custom config class, pointing to your model_id
|
| 50 |
+
# trust_remote_code=True allows it to use any specific code paths from your model_id if needed for config.
|
| 51 |
+
config = VisionLanguageConfig.from_pretrained(model_id, trust_remote_code=True)
|
| 52 |
+
print("Model config loaded.")
|
| 53 |
+
|
| 54 |
+
print(f"Attempting to load model weights for {model_id} using VisionLanguageModel")
|
| 55 |
+
# Load the model weights using the custom model class and the loaded config
|
| 56 |
+
model = VisionLanguageModel.from_pretrained(model_id, config=config, trust_remote_code=True).to(device)
|
| 57 |
+
print("Model weights loaded successfully.")
|
| 58 |
+
model.eval() # Set to evaluation mode
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error loading model, processor, or config: {e}")
|
| 62 |
+
# Fallback if any step fails
|
| 63 |
+
processor = None
|
| 64 |
+
model = None
|
| 65 |
+
else:
|
| 66 |
+
print("Custom nanoVLM classes not imported, cannot load model.")
|
| 67 |
+
|
| 68 |
|
| 69 |
def generate_text_for_image(image_input, prompt_input):
|
| 70 |
+
if model is None or processor is None or not hasattr(model, 'generate'): # Check if model has generate
|
| 71 |
+
return "Error: Model or processor not loaded correctly or model doesn't have 'generate' method. Check logs."
|
| 72 |
|
| 73 |
if image_input is None:
|
| 74 |
return "Please upload an image."
|
| 75 |
if not prompt_input:
|
| 76 |
+
return "Please provide a prompt."
|
| 77 |
|
| 78 |
try:
|
| 79 |
if not isinstance(image_input, Image.Image):
|
|
|
|
| 84 |
if pil_image.mode != "RGB":
|
| 85 |
pil_image = pil_image.convert("RGB")
|
| 86 |
|
| 87 |
+
# Prepare inputs for the model using the processor
|
| 88 |
+
# The exact format for nanoVLM's custom model might require specific handling.
|
| 89 |
+
# The processor from AutoProcessor should generally work.
|
| 90 |
inputs = processor(text=[prompt_input], images=[pil_image], return_tensors="pt").to(device)
|
| 91 |
|
| 92 |
+
# Generate text using the model's generate method
|
| 93 |
+
# Common parameters for generation:
|
| 94 |
generated_ids = model.generate(
|
| 95 |
+
inputs['pixel_values'], # Assuming processor output has 'pixel_values'
|
| 96 |
+
inputs['input_ids'], # Assuming processor output has 'input_ids'
|
| 97 |
+
attention_mask=inputs.get('attention_mask'), # Optional, but good to include
|
| 98 |
max_new_tokens=150,
|
| 99 |
num_beams=3,
|
| 100 |
no_repeat_ngram_size=2,
|
| 101 |
early_stopping=True
|
| 102 |
+
# Check nanoVLM's VisionLanguageModel.generate() for specific parameters
|
| 103 |
)
|
| 104 |
|
| 105 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 106 |
|
|
|
|
| 107 |
if prompt_input and generated_text.startswith(prompt_input):
|
| 108 |
cleaned_text = generated_text[len(prompt_input):].lstrip(" ,.:")
|
| 109 |
else:
|
|
|
|
| 113 |
|
| 114 |
except Exception as e:
|
| 115 |
print(f"Error during generation: {e}")
|
|
|
|
| 116 |
return f"An error occurred during text generation: {str(e)}"
|
| 117 |
|
| 118 |
+
description = "Interactive demo for lusxvr/nanoVLM-222M."
|
| 119 |
+
example_image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
gradio_cache_dir = os.environ.get("GRADIO_TEMP_DIR", "/tmp/gradio_tmp")
|
| 121 |
|
|
|
|
| 122 |
iface = gr.Interface(
|
| 123 |
fn=generate_text_for_image,
|
| 124 |
inputs=[
|
| 125 |
gr.Image(type="pil", label="Upload Image"),
|
| 126 |
+
gr.Textbox(label="Your Prompt/Question")
|
| 127 |
],
|
| 128 |
outputs=gr.Textbox(label="Generated Text", show_copy_button=True),
|
| 129 |
title="Interactive nanoVLM-222M Demo",
|
|
|
|
| 131 |
examples=[
|
| 132 |
[example_image_url, "a photo of a"],
|
| 133 |
[example_image_url, "Describe the image in detail."],
|
|
|
|
| 134 |
],
|
| 135 |
cache_examples=True,
|
|
|
|
| 136 |
examples_cache_folder=gradio_cache_dir,
|
| 137 |
allow_flagging="never"
|
| 138 |
)
|
| 139 |
|
| 140 |
if __name__ == "__main__":
|
| 141 |
if model is None or processor is None:
|
| 142 |
+
print("CRITICAL: Model or processor failed to load. Gradio interface may not function correctly.")
|
|
|
|
| 143 |
else:
|
| 144 |
print("Launching Gradio interface...")
|
| 145 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|