Spaces:
Running
Running
| #!/usr/bin/env python | |
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import pickle as pkl | |
| import sys | |
| import torch | |
| """ | |
| Usage: | |
| # download one of the ResNet{18,34,50,101,152} models from torchvision: | |
| wget https://download.pytorch.org/models/resnet50-19c8e357.pth -O r50.pth | |
| # run the conversion | |
| ./convert-torchvision-to-d2.py r50.pth r50.pkl | |
| # Then, use r50.pkl with the following changes in config: | |
| MODEL: | |
| WEIGHTS: "/path/to/r50.pkl" | |
| PIXEL_MEAN: [123.675, 116.280, 103.530] | |
| PIXEL_STD: [58.395, 57.120, 57.375] | |
| RESNETS: | |
| DEPTH: 50 | |
| STRIDE_IN_1X1: False | |
| INPUT: | |
| FORMAT: "RGB" | |
| These models typically produce slightly worse results than the | |
| pre-trained ResNets we use in official configs, which are the | |
| original ResNet models released by MSRA. | |
| """ | |
| if __name__ == "__main__": | |
| input = sys.argv[1] | |
| obj = torch.load(input, map_location="cpu") | |
| newmodel = {} | |
| for k in list(obj.keys()): | |
| old_k = k | |
| if "layer" not in k: | |
| k = "stem." + k | |
| for t in [1, 2, 3, 4]: | |
| k = k.replace("layer{}".format(t), "res{}".format(t + 1)) | |
| for t in [1, 2, 3]: | |
| k = k.replace("bn{}".format(t), "conv{}.norm".format(t)) | |
| k = k.replace("downsample.0", "shortcut") | |
| k = k.replace("downsample.1", "shortcut.norm") | |
| print(old_k, "->", k) | |
| newmodel[k] = obj.pop(old_k).detach().numpy() | |
| res = {"model": newmodel, "__author__": "torchvision", "matching_heuristics": True} | |
| with open(sys.argv[2], "wb") as f: | |
| pkl.dump(res, f) | |
| if obj: | |
| print("Unconverted keys:", obj.keys()) | |