wjm55
fixing app
ae1b016
from fastapi import FastAPI, UploadFile
from ultralytics import YOLO
from PIL import Image
import os
from huggingface_hub import hf_hub_download
def init_model(model_id: str):
# Define models
MODEL_OPTIONS = {
"YOLOv11-Nano": "medieval-yolov11n.pt",
"YOLOv11-Small": "medieval-yolov11s.pt",
"YOLOv11-Medium": "medieval-yolov11m.pt",
"YOLOv11-Large": "medieval-yolov11l.pt",
"YOLOv11-XLarge": "medieval-yolov11x.pt"
}
if model_id in MODEL_OPTIONS:
print(MODEL_OPTIONS[model_id])
path = hf_hub_download(
repo_id="biglam/medieval-manuscript-yolov11",
filename=MODEL_OPTIONS[model_id],
)
print(path)
# Initialize and return model
model = YOLO(path)
print("Model initialized")
return model
else:
raise ValueError(f"Model {model_id} not found")
app = FastAPI()
@app.get("/")
async def root():
return {"status": "ok"}
@app.post("/predict")
async def predict(image: UploadFile,
model_id: str = "YOLOv11-XLarge",
conf: float = 0.25,
iou: float = 0.7
):
print(model_id, conf, iou)
# Initialize model for each request
model = init_model(model_id)
# Open image from uploaded file
image = Image.open(image.file)
print("Image opened")
# Run inference with the PIL Image
results = model.predict(source=image, conf=conf, iou=iou)
print("Inference done")
# Extract detection results
result = results[0]
detections = []
for box in result.boxes:
detection = {
"class": result.names[int(box.cls[0])],
"confidence": float(box.conf[0]),
"bbox": box.xyxy[0].tolist()
}
detections.append(detection)
return {"detections": detections}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)