Spaces:
Runtime error
Runtime error
File size: 26,866 Bytes
8aa5548 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
# -*- coding: utf-8 -*-
"""melotts training.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1srmto1Bf7xQl7la1-5cTZOvbTnL-KWDG
"""
# Fetch `notebook_utils` module
import requests
from pathlib import Path
if not Path("notebook_utils.py").exists():
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
)
open("notebook_utils.py", "w").write(r.text)
if not Path("cmd_helper.py").exists():
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/cmd_helper.py",
)
open("cmd_helper.py", "w").write(r.text)
if not Path("pip_helper.py").exists():
r = requests.get(
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/pip_helper.py",
)
open("pip_helper.py", "w").write(r.text)
# !!! have to restart session
from pathlib import Path
from cmd_helper import clone_repo
from pip_helper import pip_install
import platform
repo_dir = Path("OpenVoice")
clone_repo("https://github.com/myshell-ai/OpenVoice")
orig_english_path = Path("OpenVoice/openvoice/text/_orig_english.py")
english_path = Path("OpenVoice/openvoice/text/english.py")
if not orig_english_path.exists():
orig_english_path = Path("OpenVoice/openvoice/text/_orig_english.py")
english_path = Path("OpenVoice/openvoice/text/english.py")
english_path.rename(orig_english_path)
with orig_english_path.open("r") as f:
data = f.read()
data = data.replace("unidecode", "anyascii")
with english_path.open("w") as out_f:
out_f.write(data)
# fix a problem with silero downloading and installing
with Path("OpenVoice/openvoice/se_extractor.py").open("r") as orig_file:
data = orig_file.read()
data = data.replace('method="silero"', 'method="silero:3.0"')
with Path("OpenVoice/openvoice/se_extractor.py").open("w") as out_f:
out_f.write(data)
# clone melotts
clone_repo("https://github.com/myshell-ai/MeloTTS")
pip_install(
"--no-deps",
"librosa==0.9.1",
"pydub==0.25.1",
"tqdm",
"inflect==7.0.0",
"pypinyin==0.50.0",
"openvino>=2025.0",
)
# Since we don't convert Japanese models, we have removed many heavy Japanese-related pip install dependencies. If you want to try, we recommend using a Python 3.10 environment on Ubuntu and uncommenting the relevant lines.
pip_install(
"--extra-index-url",
"https://download.pytorch.org/whl/cpu",
# "mecab-python3==1.0.9",
"nncf",
"wavmark>=0.0.3",
"faster-whisper>=0.9.0",
"eng_to_ipa==0.0.2",
"cn2an==0.5.22",
"jieba==0.42.1",
"langid==1.1.6",
"ipywebrtc",
"anyascii==0.3.2",
"torch>=2.1",
"torchaudio",
"cached_path",
"transformers>=4.38,<5.0",
"num2words==0.5.12",
# "unidic_lite==1.0.8",
# "unidic==1.1.0",
"pykakasi==2.2.1",
# "fugashi==1.3.0",
"g2p_en==2.1.0",
"jamo==0.4.1",
"gruut[de,es,fr]==2.2.3",
"g2pkk>=0.1.1",
"dtw-python",
"more-itertools",
"tiktoken",
"tensorboard==2.16.2",
"loguru==0.7.2",
"nltk",
"gradio",
)
pip_install("--no-deps", "whisper-timestamped>=1.14.2", "openai-whisper")
if platform.system() == "Darwin":
pip_install("numpy<2.0")
# fix the problem of `module 'botocore.exceptions' has no attribute 'HTTPClientError'`
pip_install("--upgrade", "botocore")
# donwload nltk data
import nltk
nltk.download("averaged_perceptron_tagger_eng")
# install unidic
# !python -m unidic download
# remove Japanese-related module in MeloTTS to fix dependencies issue
# If you want to use Japanese, please do not modify these files
import re
with Path("MeloTTS/melo/text/english.py").open("r", encoding="utf-8") as orig_file:
data = orig_file.read()
japanese_import = "from .japanese import distribute_phone"
replacement_function = """
def distribute_phone(n_phone, n_word):
phones_per_word = [0] * n_word
for task in range(n_phone):
min_tasks = min(phones_per_word)
min_index = phones_per_word.index(min_tasks)
phones_per_word[min_index] += 1
return phones_per_word
"""
data = data.replace(japanese_import, replacement_function) # replace `from .japanese import distribute_phone` with the function
with Path("MeloTTS/melo/text/english.py").open("w", encoding="utf-8") as out_f:
out_f.write(data)
with Path("MeloTTS/melo/text/__init__.py").open("r", encoding="utf-8") as orig_file:
data = orig_file.read()
data = data.replace("from .japanese_bert import get_bert_feature as jp_bert", "")
data = data.replace("from .spanish_bert import get_bert_feature as sp_bert", "")
data = data.replace("from .french_bert import get_bert_feature as fr_bert", "")
data = data.replace("from .korean import get_bert_feature as kr_bert", "")
# Replace the lang_bert_func_map dictionary, keeping only the keys ZH, EN, and ZH_MIX_EN
pattern = re.compile(r"lang_bert_func_map\s*=\s*\{[^}]+\}", re.DOTALL)
replacement = """lang_bert_func_map = {
"ZH": zh_bert,
"EN": en_bert,
"ZH_MIX_EN": zh_mix_en_bert,
}"""
data = pattern.sub(replacement, data)
with Path("MeloTTS/melo/text/__init__.py").open("w", encoding="utf-8") as out_f:
out_f.write(data)
# clean the modules
for filename in ["japanese.py", "japanese_bert.py"]:
Path(f"MeloTTS/melo/text/{filename}").write_text("", encoding="utf-8")
import os
import torch
import openvino as ov
import ipywidgets as widgets
from IPython.display import Audio
from notebook_utils import download_file, device_widget
core = ov.Core()
from openvoice.api import ToneColorConverter, OpenVoiceBaseClass
import openvoice.se_extractor as se_extractor
from melo.api import TTS
CKPT_BASE_PATH = Path("checkpoints")
base_speakers_suffix = CKPT_BASE_PATH / "base_speakers" / "ses"
converter_suffix = CKPT_BASE_PATH / "converter"
melotts_chinese_suffix = CKPT_BASE_PATH / "MeloTTS-Chinese"
melotts_english_suffix = CKPT_BASE_PATH / "MeloTTS-English-v3"
def download_from_hf_hub(repo_id, filename, local_dir="./"):
from huggingface_hub import hf_hub_download
local_path = Path(local_dir)
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_path)
# Download OpenVoice2
download_from_hf_hub("myshell-ai/OpenVoiceV2", "converter/checkpoint.pth", CKPT_BASE_PATH)
download_from_hf_hub("myshell-ai/OpenVoiceV2", "converter/config.json", CKPT_BASE_PATH)
download_from_hf_hub("myshell-ai/OpenVoiceV2", "base_speakers/ses/en-newest.pth", CKPT_BASE_PATH)
download_from_hf_hub("myshell-ai/OpenVoiceV2", "base_speakers/ses/zh.pth", CKPT_BASE_PATH)
# Download MeloTTS
download_from_hf_hub("myshell-ai/MeloTTS-Chinese", "checkpoint.pth", melotts_chinese_suffix)
download_from_hf_hub("myshell-ai/MeloTTS-Chinese", "config.json", melotts_chinese_suffix)
download_from_hf_hub("myshell-ai/MeloTTS-English-v3", "checkpoint.pth", melotts_english_suffix)
download_from_hf_hub("myshell-ai/MeloTTS-English-v3", "config.json", melotts_english_suffix)
class OVSynthesizerTTSWrapper(torch.nn.Module):
"""
Wrapper for SynthesizerTrn model from MeloTTS to make it compatible with Torch-style inference.
"""
def __init__(self, model, language):
super().__init__()
self.model = model
self.language = language
def forward(
self,
x,
x_lengths,
sid,
tone,
language,
bert,
ja_bert,
noise_scale,
length_scale,
noise_scale_w,
sdp_ratio,
):
"""
Forward call to the underlying SynthesizerTrn model. Accepts arbitrary arguments
and forwards them directly to the model's inference method.
"""
return self.model.infer(
x,
x_lengths,
sid,
tone,
language,
bert,
ja_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)
def get_example_input(self):
"""
Return a tuple of example inputs for tracing/ONNX exporting or debugging.
When exporting the SynthesizerTrn function,
This model has been found to be very sensitive to the example_input used for model transformation.
Here, we have implemented some simple rules or considered using real input data.
"""
def gen_interleaved_random_tensor(length, value_range):
"""Generate a Tensor in the format [0, val, 0, val, ..., 0], val ∈ [low, high)."""
return torch.tensor([[0 if i % 2 == 0 else torch.randint(*value_range, (1,)).item() for i in range(length)]], dtype=torch.int64).to(pt_device)
def gen_interleaved_fixed_tensor(length, fixed_value):
"""Generate a Tensor in the format [0, val, 0, val, ..., 0]"""
interleaved = [0 if i % 2 == 0 else fixed_value for i in range(length)]
return torch.tensor([interleaved], dtype=torch.int64).to(pt_device)
if self.language == "EN_NEWEST":
seq_len = 73
x_tst = gen_interleaved_random_tensor(seq_len, (14, 220))
x_tst[:3] = 0
x_tst[-3:] = 0
x_tst_lengths = torch.tensor([seq_len], dtype=torch.int64).to(pt_device)
speakers = torch.tensor([0], dtype=torch.int64).to(pt_device) # This model has only one fixed id for speakers.
tones = gen_interleaved_random_tensor(seq_len, (5, 10))
lang_ids = gen_interleaved_fixed_tensor(seq_len, 2) # lang_id for english
bert = torch.randn((1, 1024, seq_len), dtype=torch.float32).to(pt_device)
ja_bert = torch.randn(1, 768, seq_len, dtype=torch.float32).to(pt_device)
sdp_ratio = torch.tensor(0.2).to(pt_device)
noise_scale = torch.tensor(0.6).to(pt_device)
noise_scale_w = torch.tensor(0.8).to(pt_device)
length_scale = torch.tensor(1.0).to(pt_device)
elif self.language == "ZH":
seq_len = 37
x_tst = gen_interleaved_random_tensor(seq_len, (7, 100))
x_tst[:3] = 0
x_tst[-3:] = 0
x_tst_lengths = torch.tensor([37], dtype=torch.int64).to(pt_device)
speakers = torch.tensor([1], dtype=torch.int64).to(pt_device) # This model has only one fixed id for speakers.
tones = gen_interleaved_random_tensor(seq_len, (4, 9))
lang_ids = gen_interleaved_fixed_tensor(seq_len, 3) # lang_id for chinese
bert = torch.zeros((1, 1024, 37), dtype=torch.float32).to(pt_device)
ja_bert = torch.randn(1, 768, 37).float().to(pt_device)
sdp_ratio = torch.tensor(0.2).to(pt_device)
noise_scale = torch.tensor(0.6).to(pt_device)
noise_scale_w = torch.tensor(0.8).to(pt_device)
length_scale = torch.tensor(1.0).to(pt_device)
return (
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
noise_scale,
length_scale,
noise_scale_w,
sdp_ratio,
)
class OVOpenVoiceConverter(torch.nn.Module):
def __init__(self, voice_model: OpenVoiceBaseClass):
super().__init__()
self.voice_model = voice_model
for par in voice_model.model.parameters():
par.requires_grad = False
def get_example_input(self):
y = torch.randn([1, 513, 238], dtype=torch.float32)
y_lengths = torch.LongTensor([y.size(-1)])
target_se = torch.randn(*(1, 256, 1))
source_se = torch.randn(*(1, 256, 1))
tau = torch.tensor(0.3)
return (y, y_lengths, source_se, target_se, tau)
def forward(self, y, y_lengths, sid_src, sid_tgt, tau):
"""
wraps the 'voice_conversion' method with forward.
"""
return self.voice_model.model.voice_conversion(y, y_lengths, sid_src, sid_tgt, tau)
pt_device = "cpu"
melo_tts_en_newest = TTS(
"EN_NEWEST",
pt_device,
use_hf=False,
config_path=melotts_english_suffix / "config.json",
ckpt_path=melotts_english_suffix / "checkpoint.pth",
)
melo_tts_zh = TTS(
"ZH",
pt_device,
use_hf=False,
config_path=melotts_chinese_suffix / "config.json",
ckpt_path=melotts_chinese_suffix / "checkpoint.pth",
)
tone_color_converter = ToneColorConverter(converter_suffix / "config.json", device=pt_device)
tone_color_converter.load_ckpt(converter_suffix / "checkpoint.pth")
print(f"ToneColorConverter version: {tone_color_converter.version}")
import nncf
IRS_PATH = Path("openvino_irs/")
EN_TTS_IR = IRS_PATH / "melo_tts_en_newest.xml"
ZH_TTS_IR = IRS_PATH / "melo_tts_zh.xml"
VOICE_CONVERTER_IR = IRS_PATH / "openvoice2_tone_conversion.xml"
paths = [EN_TTS_IR, ZH_TTS_IR, VOICE_CONVERTER_IR]
models = [
OVSynthesizerTTSWrapper(melo_tts_en_newest.model, "EN_NEWEST"),
OVSynthesizerTTSWrapper(melo_tts_zh.model, "ZH"),
OVOpenVoiceConverter(tone_color_converter),
]
ov_models = []
for model, path in zip(models, paths):
if not path.exists():
ov_model = ov.convert_model(model, example_input=model.get_example_input())
ov_model = nncf.compress_weights(ov_model)
ov.save_model(ov_model, path)
else:
ov_model = core.read_model(path)
ov_models.append(ov_model)
ov_en_tts, ov_zh_tts, ov_voice_conversion = ov_models
core = ov.Core()
device = device_widget("CPU", exclude=["NPU"])
device
REFERENCE_VOICES_PATH = f"{repo_dir}/resources/"
reference_speakers = [
*[path for path in os.listdir(REFERENCE_VOICES_PATH) if os.path.splitext(path)[-1] == ".mp3"],
"record_manually",
"load_manually",
]
ref_speaker = widgets.Dropdown(
options=reference_speakers,
value=reference_speakers[0],
description="reference voice from which tone color will be copied",
disabled=False,
)
ref_speaker
OUTPUT_DIR = Path("outputs/")
OUTPUT_DIR.mkdir(exist_ok=True)
ref_speaker_path = f"{REFERENCE_VOICES_PATH}/{ref_speaker.value}"
allowed_audio_types = ".mp4,.mp3,.wav,.wma,.aac,.m4a,.m4b,.webm"
if ref_speaker.value == "record_manually":
ref_speaker_path = OUTPUT_DIR / "custom_example_sample.webm"
from ipywebrtc import AudioRecorder, CameraStream
camera = CameraStream(constraints={"audio": True, "video": False})
recorder = AudioRecorder(stream=camera, filename=ref_speaker_path, autosave=True)
display(recorder)
elif ref_speaker.value == "load_manually":
upload_ref = widgets.FileUpload(
accept=allowed_audio_types,
multiple=False,
description="Select audio with reference voice",
)
display(upload_ref)
def save_audio(voice_source: widgets.FileUpload, out_path: str):
with open(out_path, "wb") as output_file:
assert len(voice_source.value) > 0, "Please select audio file"
output_file.write(voice_source.value[0]["content"])
if ref_speaker.value == "load_manually":
ref_speaker_path = f"{OUTPUT_DIR}/{upload_ref.value[0].name}"
save_audio(upload_ref, ref_speaker_path)
Audio(ref_speaker_path)
# Commented out IPython magic to ensure Python compatibility.
torch_hub_local = Path("torch_hub_local/")
# %env TORCH_HOME={str(torch_hub_local.absolute())}
# second step to fix a problem with silero downloading and installing
import os
import zipfile
url = "https://github.com/snakers4/silero-vad/zipball/v3.0"
torch_hub_dir = torch_hub_local / "hub"
torch.hub.set_dir(torch_hub_dir.as_posix())
zip_filename = "v3.0.zip"
output_path = torch_hub_dir / "v3.0"
if not (torch_hub_dir / zip_filename).exists():
download_file(url, directory=torch_hub_dir, filename=zip_filename)
zip_ref = zipfile.ZipFile((torch_hub_dir / zip_filename).as_posix(), "r")
zip_ref.extractall(path=output_path.as_posix())
zip_ref.close()
v3_dirs = [d for d in output_path.iterdir() if "snakers4-silero-vad" in d.as_posix()]
if len(v3_dirs) > 0 and not (torch_hub_dir / "snakers4_silero-vad_v3.0").exists():
v3_dir = str(v3_dirs[0])
os.rename(str(v3_dirs[0]), (torch_hub_dir / "snakers4_silero-vad_v3.0").as_posix())
en_source_newest_se = torch.load(base_speakers_suffix / "en-newest.pth")
zh_source_se = torch.load(base_speakers_suffix / "zh.pth")
target_se, audio_name = se_extractor.get_se(ref_speaker_path, tone_color_converter, target_dir=OUTPUT_DIR, vad=True)
def get_pathched_infer(ov_model: ov.Model, device: str) -> callable:
compiled_model = core.compile_model(ov_model, device)
def infer_impl(
x,
x_lengths,
sid,
tone,
language,
bert,
ja_bert,
noise_scale,
length_scale,
noise_scale_w,
max_len=None,
sdp_ratio=1.0,
y=None,
g=None,
):
ov_output = compiled_model(
(
x,
x_lengths,
sid,
tone,
language,
bert,
ja_bert,
noise_scale,
length_scale,
noise_scale_w,
sdp_ratio,
)
)
return (torch.tensor(ov_output[0]),)
return infer_impl
def get_patched_voice_conversion(ov_model: ov.Model, device: str) -> callable:
compiled_model = core.compile_model(ov_model, device)
def voice_conversion_impl(y, y_lengths, sid_src, sid_tgt, tau):
ov_output = compiled_model((y, y_lengths, sid_src, sid_tgt, tau))
return (torch.tensor(ov_output[0]),)
return voice_conversion_impl
melo_tts_en_newest.model.infer = get_pathched_infer(ov_en_tts, device.value)
melo_tts_zh.model.infer = get_pathched_infer(ov_zh_tts, device.value)
tone_color_converter.model.voice_conversion = get_patched_voice_conversion(ov_voice_conversion, device.value)
voice_source = widgets.Dropdown(
options=["use TTS", "choose_manually"],
value="use TTS",
description="Voice source",
disabled=False,
)
voice_source
if voice_source.value == "choose_manually":
upload_orig_voice = widgets.FileUpload(
accept=allowed_audio_types,
multiple=False,
description="audio whose tone will be replaced",
)
display(upload_orig_voice)
from IPython.display import Audio, display
if voice_source.value == "choose_manually":
orig_voice_path = f"{OUTPUT_DIR}/{upload_orig_voice.value[0].name}"
save_audio(upload_orig_voice, orig_voice_path)
source_se, _ = se_extractor.get_se(orig_voice_path, tone_color_converter, target_dir=OUTPUT_DIR, vad=True)
else:
en_text = """
I love going to school by bus
"""
# source_se = en_source_newest_se
en_orig_voice_path = OUTPUT_DIR / "output_ov_en-newest.wav"
print("use output_ov_en-newest.wav")
speaker_id = 0 # Choose the first speaker
melo_tts_en_newest.tts_to_file(en_text, speaker_id, en_orig_voice_path, speed=1.0)
zh_text = """
OpenVINO 是一个全面的开发工具集,旨在快速开发和部署各类应用程序及解决方案,可用于模仿人类视觉、自动语音识别、自然语言处理、
推荐系统等多种任务。
"""
# source_se = zh_source_se
zh_orig_voice_path = OUTPUT_DIR / "output_ov_zh.wav"
print("use output_ov_zh.wav")
speaker_id = 1 # Choose the first speaker
melo_tts_zh.tts_to_file(zh_text, speaker_id, zh_orig_voice_path, speed=1.0)
print("Playing English Original voice")
display(Audio(en_orig_voice_path))
print("Playing Chinese Original voice")
display(Audio(zh_orig_voice_path))
tau_slider = widgets.FloatSlider(
value=0.3,
min=0.01,
max=2.0,
step=0.01,
description="tau",
disabled=False,
readout_format=".2f",
)
tau_slider
from IPython.display import Audio, display
if voice_source.value == "choose_manually":
resulting_voice_path = OUTPUT_DIR / "output_ov_cloned.wav"
tone_color_converter.convert(
audio_src_path=orig_voice_path,
src_se=source_se,
tgt_se=target_se,
output_path=resulting_voice_path,
tau=tau_slider.value,
message="@MyShell",
)
print("Playing manually chosen cloned voice:")
display(Audio(resulting_voice_path))
else:
en_resulting_voice_path = OUTPUT_DIR / "output_ov_en-newest_cloned.wav"
zh_resulting_voice_path = OUTPUT_DIR / "output_ov_zh_cloned.wav"
tone_color_converter.convert(
audio_src_path=en_orig_voice_path,
src_se=en_source_newest_se,
tgt_se=target_se,
output_path=en_resulting_voice_path,
tau=tau_slider.value,
message="@MyShell",
)
tone_color_converter.convert(
audio_src_path=zh_orig_voice_path,
src_se=zh_source_se,
tgt_se=target_se,
output_path=zh_resulting_voice_path,
tau=tau_slider.value,
message="@MyShell",
)
print("Playing English cloned voice:")
display(Audio(en_resulting_voice_path))
print("Playing Chinese cloned voice:")
display(Audio(zh_resulting_voice_path))
import gradio as gr
import langid
supported_languages = ["zh", "en"]
supported_styles = {
"zh": "zh_default",
"en": [
"en_latest",
],
}
def predict_impl(
prompt,
style,
audio_file_pth,
agree,
output_dir,
tone_color_converter,
en_tts_model,
zh_tts_model,
en_source_se,
zh_source_se,
):
text_hint = ""
if not agree:
text_hint += "[ERROR] Please accept the Terms & Condition!\n"
gr.Warning("Please accept the Terms & Condition!")
return (
text_hint,
None,
None,
)
language_predicted = langid.classify(prompt)[0].strip()
if language_predicted not in supported_languages:
text_hint += f"[ERROR] The detected language {language_predicted} for your input text is not in our Supported Languages: {supported_languages}\n"
gr.Warning(f"The detected language {language_predicted} for your input text is not in our Supported Languages: {supported_languages}")
return (
text_hint,
None,
None,
)
# check the style
if style not in supported_styles[language_predicted]:
text_hint += f"[Warming] The style {style} is not supported for detected language {language_predicted}. For language {language_predicted}, we support styles: {supported_styles[language_predicted]}. Using the wrong style may result in unexpected behavior.\n"
gr.Warning(
f"[Warming] The style {style} is not supported for detected language {language_predicted}. For language {language_predicted}, we support styles: {supported_styles[language_predicted]}. Using the wrong style may result in unexpected behavior."
)
if len(prompt.split()) < 2:
text_hint += "[ERROR] Please give a longer prompt text \n"
gr.Warning("Please give a longer prompt text")
return (
text_hint,
None,
None,
)
if len(prompt.split()) > 50:
text_hint += "[ERROR] Text length limited to 50 words for this demo, please try shorter text. You can clone our open-source repo or try it on our website https://app.myshell.ai/robot-workshop/widget/174760057433406749 \n"
gr.Warning(
"Text length limited to 50 words for this demo, please try shorter text. You can clone our open-source repo or try it on our website https://app.myshell.ai/robot-workshop/widget/174760057433406749"
)
return (
text_hint,
None,
None,
)
speaker_wav = audio_file_pth
if language_predicted == "zh":
tts_model = zh_tts_model
if zh_tts_model is None:
gr.Warning("TTS model for Chinece language was not loaded")
return (
text_hint,
None,
None,
)
source_se = zh_source_se
speaker_id = 1
else:
tts_model = en_tts_model
if en_tts_model is None:
gr.Warning("TTS model for English language was not loaded")
return (
text_hint,
None,
None,
)
source_se = en_source_se
speaker_id = 0
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
try:
target_se, audio_name = se_extractor.get_se(speaker_wav, tone_color_converter, target_dir=OUTPUT_DIR, vad=True)
except Exception as e:
text_hint += f"[ERROR] Get target tone color error {str(e)} \n"
gr.Warning("[ERROR] Get target tone color error {str(e)} \n")
return (
text_hint,
None,
None,
)
src_path = f"{output_dir}/tmp.wav"
tts_model.tts_to_file(prompt, speaker_id, src_path, speed=1.0)
if tone_color_converter is None or source_se is None:
gr.Warning("Tone Color Converter model was not loaded")
return (
text_hint,
None,
None,
)
save_path = f"{output_dir}/output.wav"
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
tau=0.3,
message=encode_message,
)
text_hint += "Get response successfully \n"
return (
text_hint,
src_path,
save_path,
)
from functools import partial
predict = partial(
predict_impl,
output_dir=OUTPUT_DIR,
tone_color_converter=tone_color_converter,
en_tts_model=melo_tts_en_newest,
zh_tts_model=melo_tts_zh,
en_source_se=en_source_newest_se,
zh_source_se=zh_source_se,
)
import sys
if "gradio_helper" in sys.modules:
del sys.modules["gradio_helper"]
if not Path("gradio_helper.py").exists():
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/notebooks/openvoice/gradio_helper.py")
open("gradio_helper.py", "w").write(r.text)
from gradio_helper import make_demo
demo = make_demo(fn=predict)
# demo.queue(max_size=1).launch(share=True, debug=True, height=1000)
demo.queue(max_size=1).launch(server_name="0.0.0.0", server_port=7860)
# try:
# demo.queue(max_size=1).launch(debug=True, height=1000)
# except Exception:
# demo.queue(max_size=1).launch(share=True, debug=True, height=1000)
# if you are launching remotely, specify server_name and server_port
# demo.launch(server_name='your server name', server_port='server port in int')
# Read more in the docs: https://gradio.app/docs/ |